論文の概要: LIP-CAR: contrast agent reduction by a deep learned inverse problem
- arxiv url: http://arxiv.org/abs/2407.10559v1
- Date: Mon, 15 Jul 2024 09:16:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 15:40:56.935906
- Title: LIP-CAR: contrast agent reduction by a deep learned inverse problem
- Title(参考訳): 深層学習逆問題によるLIP-CAR-コントラスト剤低減
- Authors: Davide Bianchi, Sonia Colombo Serra, Davide Evangelista, Pengpeng Luo, Elena Morotti, Giovanni Valbusa,
- Abstract要約: コントラスト剤の低減問題は、視力増強を保ちながらコントラスト剤の投与量を減少させることである。
CARタスクに関する現在の文献は、完全な画像処理フレームワーク内のディープラーニング技術に基づいている。
我々は,高線量画像を対応する低線量画像にマッピングするイメージ・ツー・イメージ演算子を学習し,CARタスクを逆問題とする。
正規化法は、堅牢性と説明可能性を提供するよく確立された数学的手法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The adoption of contrast agents in medical imaging protocols is crucial for accurate and timely diagnosis. While highly effective and characterized by an excellent safety profile, the use of contrast agents has its limitation, including rare risk of allergic reactions, potential environmental impact and economic burdens on patients and healthcare systems. In this work, we address the contrast agent reduction (CAR) problem, which involves reducing the administered dosage of contrast agent while preserving the visual enhancement. The current literature on the CAR task is based on deep learning techniques within a fully image processing framework. These techniques digitally simulate high-dose images from images acquired with a low dose of contrast agent. We investigate the feasibility of a ``learned inverse problem'' (LIP) approach, as opposed to the end-to-end paradigm in the state-of-the-art literature. Specifically, we learn the image-to-image operator that maps high-dose images to their corresponding low-dose counterparts, and we frame the CAR task as an inverse problem. We then solve this problem through a regularized optimization reformulation. Regularization methods are well-established mathematical techniques that offer robustness and explainability. Our approach combines these rigorous techniques with cutting-edge deep learning tools. Numerical experiments performed on pre-clinical medical images confirm the effectiveness of this strategy, showing improved stability and accuracy in the simulated high-dose images.
- Abstract(参考訳): 医用画像プロトコルにおける造影剤の採用は、正確かつタイムリーな診断に不可欠である。
優れた安全プロファイルによって特徴付けられるが、コントラスト剤の使用には、アレルギー反応の稀なリスク、潜在的な環境影響、患者や医療システムに対する経済的負担など、制限がある。
本研究では,コントラスト剤の投与量を減少させるとともに,視覚的拡張を保ちながらコントラスト剤の投与量を減少させるコントラスト剤還元(CAR)問題に対処する。
CARタスクに関する現在の文献は、完全な画像処理フレームワーク内のディープラーニング技術に基づいている。
これらの技術は、低線量コントラスト剤で取得した画像から高線量画像をデジタル的にシミュレートする。
本稿では,「学習逆問題」 (LIP) アプローチの実現可能性について,最先端文献におけるエンドツーエンドのパラダイムとは対照的に検討する。
具体的には,高線量画像を対応する低線量画像にマッピングするイメージ・ツー・イメージ演算子を学習し,CARタスクを逆問題とする。
次に、正規化された最適化の修正によってこの問題を解決する。
正規化法は、堅牢性と説明可能性を提供するよく確立された数学的手法である。
私たちのアプローチは、これらの厳密なテクニックと最先端のディープラーニングツールを組み合わせています。
本手法の有効性を確認し, シミュレーションした高線量画像の安定性と精度の向上を図った。
関連論文リスト
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Classification of Breast Cancer Histopathology Images using a Modified Supervised Contrastive Learning Method [4.303291247305105]
モデルロバスト性を高めるために、画像レベルラベルとドメイン固有の拡張の両方を活用することで教師付きコントラスト学習法を改善する。
乳癌の病理組織像から得られたBreakHisデータセットについて検討した。
この改良は93.63%の絶対精度に対応し、データの特性を利用してより適切な表現空間を学習するアプローチの有効性を強調した。
論文 参考訳(メタデータ) (2024-05-06T17:06:11Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
これらの手法の主な課題は、コントラスト強調の正確な予測と現実的な画像の合成である。
コントラスト前の画像対とコントラスト後の画像対のサブトラクション画像に符号化されたコントラスト信号を利用することで、両課題に対処する。
各種スキャナー,フィールド強度,コントラストエージェントを用いた合成および実データに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-03-06T08:35:29Z) - Adversarial-Robust Transfer Learning for Medical Imaging via Domain
Assimilation [17.46080957271494]
医用画像が公開されていないため、現代のアルゴリズムは、大量の自然画像に基づいて事前訓練されたモデルに依存するようになった。
自然画像と医療画像の間に重要なエムドメインの相違があり、AIモデルは敵の攻撃に対するエムの脆弱性を高める。
本稿では,テクスチャと色適応を伝達学習に導入する Em ドメイン同化手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T06:39:15Z) - AMLP:Adaptive Masking Lesion Patches for Self-supervised Medical Image
Segmentation [67.97926983664676]
自己監督型マスク画像モデリングは自然画像に対して有望な結果を示した。
しかし,このような手法を医用画像に直接適用することは依然として困難である。
適応型マスキング病変パッチ(AMLP)の自己管理型医用画像分割フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T13:18:10Z) - OTRE: Where Optimal Transport Guided Unpaired Image-to-Image Translation
Meets Regularization by Enhancing [4.951748109810726]
正確な診断と自動解析のために、最適な網膜画像品質が義務付けられている。
そこで本研究では,低品質の網膜CFPを高画質のCFPにマッピングするための画像対画像変換手法を提案する。
統合されたフレームワークOTREを3つの公開網膜画像データセット上で検証した。
論文 参考訳(メタデータ) (2023-02-06T18:39:40Z) - Metadata-enhanced contrastive learning from retinal optical coherence tomography images [7.932410831191909]
従来のコントラストフレームワークを新しいメタデータ強化戦略で拡張する。
本手法では,画像間のコントラスト関係の真のセットを近似するために,患者メタデータを広く活用する。
提案手法は、6つの画像レベル下流タスクのうち5つにおいて、標準コントラスト法と網膜画像基盤モデルの両方に優れる。
論文 参考訳(メタデータ) (2022-08-04T08:53:15Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。