論文の概要: An evaluation of CNN models and data augmentation techniques in hierarchical localization of mobile robots
- arxiv url: http://arxiv.org/abs/2407.10596v1
- Date: Mon, 15 Jul 2024 10:20:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 15:31:11.887168
- Title: An evaluation of CNN models and data augmentation techniques in hierarchical localization of mobile robots
- Title(参考訳): 移動ロボットの階層的位置決めにおけるCNNモデルとデータ拡張手法の評価
- Authors: J. J. Cabrera, O. J. Céspedes, S. Cebollada, O. Reinoso, L. Payá,
- Abstract要約: 本研究では,移動ロボットの階層的位置決めを行うために,CNNモデルの評価とデータ拡張を行う。
この意味では、バックボーンとして使用される様々な最先端CNNモデルのアブレーション研究を示す。
ロボットの視覚的ローカライゼーションに対処するために,様々なデータ拡張視覚効果を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents an evaluation of CNN models and data augmentation to carry out the hierarchical localization of a mobile robot by using omnidireccional images. In this sense, an ablation study of different state-of-the-art CNN models used as backbone is presented and a variety of data augmentation visual effects are proposed for addressing the visual localization of the robot. The proposed method is based on the adaption and re-training of a CNN with a dual purpose: (1) to perform a rough localization step in which the model is used to predict the room from which an image was captured, and (2) to address the fine localization step, which consists in retrieving the most similar image of the visual map among those contained in the previously predicted room by means of a pairwise comparison between descriptors obtained from an intermediate layer of the CNN. In this sense, we evaluate the impact of different state-of-the-art CNN models such as ConvNeXt for addressing the proposed localization. Finally, a variety of data augmentation visual effects are separately employed for training the model and their impact is assessed. The performance of the resulting CNNs is evaluated under real operation conditions, including changes in the lighting conditions. Our code is publicly available on the project website https://github.com/juanjo-cabrera/IndoorLocalizationSingleCNN.git
- Abstract(参考訳): 本研究では,CNNモデルの評価とデータ拡張を行い,全方位画像を用いて移動ロボットの階層的位置決めを行う。
この意味では、バックボーンとして使用される様々な最先端CNNモデルのアブレーション研究を行い、ロボットの視覚的位置付けに対処するために、様々なデータ拡張視覚効果を提案する。
提案手法は,CNNの2つの目的による適応と再学習に基づいて,(1)画像が捕捉された部屋の予測にモデルを使用する粗いローカライゼーションステップを実行すること,(2)CNNの中間層から得られたディクリプタ間のペア比較により,予め予測された部屋に含まれる視覚地図の最も類似した画像を取得することからなる微妙なローカライゼーションステップに対処すること,である。
この意味で、提案するローカライゼーションに対処するために、ConvNeXtのような様々な最先端CNNモデルが与える影響を評価する。
最後に、モデルのトレーニングには、さまざまなデータ拡張視覚効果が別々に採用され、その影響が評価される。
その結果,照明条件の変化を含む実動作条件下でのCNNの性能評価を行った。
私たちのコードはプロジェクトのWebサイトhttps://github.com/juanjo-cabrera/IndoorLocalizationSingleCNN.gitで公開されています。
関連論文リスト
- Model Parallel Training and Transfer Learning for Convolutional Neural Networks by Domain Decomposition [0.0]
ディープ畳み込みニューラルネットワーク(CNN)は、幅広い画像処理アプリケーションで非常に成功したことが示されている。
モデルパラメータの増大と大量のトレーニングデータの増加により、複雑なCNNを効率的に訓練するための並列化戦略が必要である。
論文 参考訳(メタデータ) (2024-08-26T17:35:01Z) - An Explainable Model-Agnostic Algorithm for CNN-based Biometrics
Verification [55.28171619580959]
本稿では,生体認証環境下でのLIME(Local Interpretable Model-Agnostic Explanations)AI手法の適用について述べる。
論文 参考訳(メタデータ) (2023-07-25T11:51:14Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
視覚認識のためのCNNモデルを学習するための新しい「デカップリング・ミクスアップ」手法を提案する。
本手法は,各画像を識別領域と雑音発生領域に分離し,これらの領域を均一に組み合わせてCNNモデルを訓練する。
実験結果から,未知のコンテキストからなるデータに対する本手法の高一般化性能を示す。
論文 参考訳(メタデータ) (2022-10-26T15:21:39Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
深部畳み込み神経ネットワーク(CNN)は、脳の機能的類似、視覚野の腹側流の優れたモデルを提供することが示されている。
ここでは、CNNまたは視覚野の内部表現で知られているいくつかの顕著な統計的パターンについて考察する。
我々は、CNNと視覚野が、オブジェクト表現の次元展開/縮小と画像情報の再構成と、同様の密接な関係を持っていることを示す。
論文 参考訳(メタデータ) (2022-05-27T08:06:40Z) - A Novel Hand Gesture Detection and Recognition system based on
ensemble-based Convolutional Neural Network [3.5665681694253903]
コンピュータビジョンとパターン認識コミュニティでは,手の部分検出が課題となっている。
畳み込みニューラルネットワーク(CNN)アーキテクチャのようなディープラーニングアルゴリズムは、分類タスクにおいて非常に一般的な選択肢となっている。
本稿では,CNNに基づくアプローチのアンサンブルを用いて,予測時の高分散や過度な問題,予測誤差などの問題を克服する。
論文 参考訳(メタデータ) (2022-02-25T06:46:58Z) - Keypoint Message Passing for Video-based Person Re-Identification [106.41022426556776]
ビデオベースの人物再識別(re-ID)は、異なるカメラで捉えた人々のビデオスニペットをマッチングすることを目的とした、視覚監視システムにおいて重要な技術である。
既存の手法は主に畳み込みニューラルネットワーク(CNN)に基づいており、そのビルディングブロックは近隣のピクセルを一度に処理するか、あるいは3D畳み込みが時間情報のモデル化に使用される場合、人の動きによって生じるミスアライメントの問題に悩まされる。
本稿では,人間指向グラフ法を用いて,通常の畳み込みの限界を克服することを提案する。具体的には,人手指のキーポイントに位置する特徴を抽出し,時空間グラフとして接続する。
論文 参考訳(メタデータ) (2021-11-16T08:01:16Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Video-based Facial Expression Recognition using Graph Convolutional
Networks [57.980827038988735]
我々は、ビデオベースの表情認識のための共通のCNN-RNNモデルに、GCN(Graph Convolutional Network)層を導入する。
我々は、CK+、Oulu-CASIA、MMIの3つの広く使われているデータセットと、AFEW8.0の挑戦的なワイルドデータセットについて、本手法の評価を行った。
論文 参考訳(メタデータ) (2020-10-26T07:31:51Z) - Exploring the Interchangeability of CNN Embedding Spaces [0.5735035463793008]
画像分類CNN10点と顔認識CNN4点をマップする。
同じクラスにトレーニングされ、共通のバックエンド-ログアーキテクチャを共有するCNNの場合、リニアマッピングは常にバックエンド層重みから直接計算される。
この意味は遠く離れており、共通のタスクのために設計、訓練されたネットワークによって学習された表現間の基礎的な共通性を示している。
論文 参考訳(メタデータ) (2020-10-05T20:32:40Z) - Homography Estimation with Convolutional Neural Networks Under
Conditions of Variance [0.0]
畳み込みニューラルネットワーク(CNN)を用いた最近の2つの手法の性能解析を行った。
CNNは、ノイズに対してより堅牢であるように訓練できるが、ノイズのないケースでは精度が低い。
我々は,CNNを特定の音の大きさに訓練すると,CNNが最高の性能を示す騒音レベルに対して,Goldilocks Zoneが生じることを示す。
論文 参考訳(メタデータ) (2020-10-02T15:11:25Z) - Decoding CNN based Object Classifier Using Visualization [6.666597301197889]
CNNのさまざまな畳み込み層で抽出される特徴の種類を視覚化する。
アクティベーションのヒートマップを可視化することは、CNNが画像内の異なるオブジェクトを分類し、ローカライズする方法を理解するのに役立ちます。
論文 参考訳(メタデータ) (2020-07-15T05:01:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。