Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation
- URL: http://arxiv.org/abs/2407.10802v1
- Date: Mon, 15 Jul 2024 15:18:28 GMT
- Title: Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation
- Authors: Friedhelm Hamann, Ziyun Wang, Ioannis Asmanis, Kenneth Chaney, Guillermo Gallego, Kostas Daniilidis,
- Abstract summary: We introduce a novel self-supervised loss combining the Contrast Maximization framework with a non-linear motion prior in the form of pixel-level trajectories.
Their effectiveness is demonstrated in two scenarios: In dense continuous-time motion estimation, our method improves the zero-shot performance of a synthetically trained model by 29%.
- Score: 34.529280562470746
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Current optical flow and point-tracking methods rely heavily on synthetic datasets. Event cameras are novel vision sensors with advantages in challenging visual conditions, but state-of-the-art frame-based methods cannot be easily adapted to event data due to the limitations of current event simulators. We introduce a novel self-supervised loss combining the Contrast Maximization framework with a non-linear motion prior in the form of pixel-level trajectories and propose an efficient solution to solve the high-dimensional assignment problem between non-linear trajectories and events. Their effectiveness is demonstrated in two scenarios: In dense continuous-time motion estimation, our method improves the zero-shot performance of a synthetically trained model on the real-world dataset EVIMO2 by 29%. In optical flow estimation, our method elevates a simple UNet to achieve state-of-the-art performance among self-supervised methods on the DSEC optical flow benchmark. Our code is available at https://github.com/tub-rip/MotionPriorCMax.
Related papers
- Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
We present a novel method that estimates the time to collision using a neuromorphic event-based camera.
The proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data.
Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-07-10T02:37:36Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
We introduce a Motion-Aware Video Frame Interpolation (MA-VFI) network, which directly estimates intermediate optical flow from consecutive frames.
It not only extracts global semantic relationships and spatial details from input frames with different receptive fields, but also effectively reduces the required computational cost and complexity.
arXiv Detail & Related papers (2024-02-05T11:00:14Z) - Taming Contrast Maximization for Learning Sequential, Low-latency,
Event-based Optical Flow [18.335337530059867]
Event cameras have gained significant traction since they open up new avenues for low-latency and low-power solutions to complex computer vision problems.
To unlock these solutions, it is necessary to develop algorithms that can leverage the unique nature of event data.
In this work, we propose a novel self-supervised learning pipeline for the estimation of event-based optical flow.
arXiv Detail & Related papers (2023-03-09T12:37:33Z) - EM-driven unsupervised learning for efficient motion segmentation [3.5232234532568376]
This paper presents a CNN-based fully unsupervised method for motion segmentation from optical flow.
We use the Expectation-Maximization (EM) framework to leverage the loss function and the training procedure of our motion segmentation neural network.
Our method outperforms comparable unsupervised methods and is very efficient.
arXiv Detail & Related papers (2022-01-06T14:35:45Z) - Motion Deblurring with Real Events [50.441934496692376]
We propose an end-to-end learning framework for event-based motion deblurring in a self-supervised manner.
Real-world events are exploited to alleviate the performance degradation caused by data inconsistency.
arXiv Detail & Related papers (2021-09-28T13:11:44Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
We introduce Time Lens, a novel indicates equal contribution method that leverages the advantages of both synthesis-based and flow-based approaches.
We show an up to 5.21 dB improvement in terms of PSNR over state-of-the-art frame-based and event-based methods.
arXiv Detail & Related papers (2021-06-14T10:33:47Z) - Unsupervised Motion Representation Enhanced Network for Action
Recognition [4.42249337449125]
Motion representation between consecutive frames has proven to have great promotion to video understanding.
TV-L1 method, an effective optical flow solver, is time-consuming and expensive in storage for caching the extracted optical flow.
We propose UF-TSN, a novel end-to-end action recognition approach enhanced with an embedded lightweight unsupervised optical flow estimator.
arXiv Detail & Related papers (2021-03-05T04:14:32Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
Motion blur in an image may have practical interests in fundamental computer vision problems.
We propose a novel framework to estimate optical flow from a single motion-blurred image in an end-to-end manner.
arXiv Detail & Related papers (2021-03-04T12:45:18Z) - What Matters in Unsupervised Optical Flow [51.45112526506455]
We compare and analyze a set of key components in unsupervised optical flow.
We construct a number of novel improvements to unsupervised flow models.
We present a new unsupervised flow technique that significantly outperforms the previous state-of-the-art.
arXiv Detail & Related papers (2020-06-08T19:36:26Z) - Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level
Optimization [59.9673626329892]
We exploit the global relationship between optical flow and camera motion using epipolar geometry.
We use implicit differentiation to enable back-propagation through the lower-level geometric optimization layer independent of its implementation.
arXiv Detail & Related papers (2020-02-26T22:28:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.