EM-driven unsupervised learning for efficient motion segmentation
- URL: http://arxiv.org/abs/2201.02074v1
- Date: Thu, 6 Jan 2022 14:35:45 GMT
- Title: EM-driven unsupervised learning for efficient motion segmentation
- Authors: Etienne Meunier, Ana\"is Badoual, and Patrick Bouthemy
- Abstract summary: This paper presents a CNN-based fully unsupervised method for motion segmentation from optical flow.
We use the Expectation-Maximization (EM) framework to leverage the loss function and the training procedure of our motion segmentation neural network.
Our method outperforms comparable unsupervised methods and is very efficient.
- Score: 3.5232234532568376
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a CNN-based fully unsupervised method for motion
segmentation from optical flow. We assume that the input optical flow can be
represented as a piecewise set of parametric motion models, typically, affine
or quadratic motion models.The core idea of this work is to leverage the
Expectation-Maximization (EM) framework. It enables us to design in a
well-founded manner the loss function and the training procedure of our motion
segmentation neural network. However, in contrast to the classical iterative
EM, once the network is trained, we can provide a segmentation for any unseen
optical flow field in a single inference step, with no dependence on the
initialization of the motion model parameters since they are not estimated in
the inference stage. Different loss functions have been investigated including
robust ones. We also propose a novel data augmentation technique on the optical
flow field with a noticeable impact on the performance. We tested our motion
segmentation network on the DAVIS2016 dataset. Our method outperforms
comparable unsupervised methods and is very efficient. Indeed, it can run at
125fps making it usable for real-time applications.
Related papers
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation [34.529280562470746]
We introduce a novel self-supervised loss combining the Contrast Maximization framework with a non-linear motion prior in the form of pixel-level trajectories.
Their effectiveness is demonstrated in two scenarios: In dense continuous-time motion estimation, our method improves the zero-shot performance of a synthetically trained model by 29%.
arXiv Detail & Related papers (2024-07-15T15:18:28Z) - Generalizable Implicit Motion Modeling for Video Frame Interpolation [51.966062283735596]
Motion is critical in flow-based Video Frame Interpolation (VFI)
We introduce General Implicit Motion Modeling (IMM), a novel and effective approach to motion modeling VFI.
Our GIMM can be easily integrated with existing flow-based VFI works by supplying accurately modeled motion.
arXiv Detail & Related papers (2024-07-11T17:13:15Z) - Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction [14.866463843514156]
Let Occ Flow is the first self-supervised work for joint 3D occupancy and occupancy flow prediction using only camera inputs.
Our approach incorporates a novel attention-based temporal fusion module to capture dynamic object dependencies.
Our method extends differentiable rendering to 3D volumetric flow fields.
arXiv Detail & Related papers (2024-07-10T12:20:11Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
Eliminating image blur produced by various kinds of motion has been a challenging problem.
We propose a novel real-world deblurring filtering model called the Motion-adaptive Separable Collaborative Filter.
Our method provides an effective solution for real-world motion blur removal and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-04-19T19:44:24Z) - GAFlow: Incorporating Gaussian Attention into Optical Flow [62.646389181507764]
We push Gaussian Attention (GA) into the optical flow models to accentuate local properties during representation learning.
We introduce a novel Gaussian-Constrained Layer (GCL) which can be easily plugged into existing Transformer blocks.
For reliable motion analysis, we provide a new Gaussian-Guided Attention Module (GGAM)
arXiv Detail & Related papers (2023-09-28T07:46:01Z) - FAMINet: Learning Real-time Semi-supervised Video Object Segmentation
with Steepest Optimized Optical Flow [21.45623125216448]
Semi-supervised video object segmentation (VOS) aims to segment a few moving objects in a video sequence, where these objects are specified by annotation of first frame.
The optical flow has been considered in many existing semi-supervised VOS methods to improve the segmentation accuracy.
A FAMINet, which consists of a feature extraction network (F), an appearance network (A), a motion network (M), and an integration network (I), is proposed in this study to address the abovementioned problem.
arXiv Detail & Related papers (2021-11-20T07:24:33Z) - Unsupervised Motion Representation Enhanced Network for Action
Recognition [4.42249337449125]
Motion representation between consecutive frames has proven to have great promotion to video understanding.
TV-L1 method, an effective optical flow solver, is time-consuming and expensive in storage for caching the extracted optical flow.
We propose UF-TSN, a novel end-to-end action recognition approach enhanced with an embedded lightweight unsupervised optical flow estimator.
arXiv Detail & Related papers (2021-03-05T04:14:32Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
Motion blur in an image may have practical interests in fundamental computer vision problems.
We propose a novel framework to estimate optical flow from a single motion-blurred image in an end-to-end manner.
arXiv Detail & Related papers (2021-03-04T12:45:18Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
We propose a modular network, motivated by a geometric analysis of what independent object motions can be recovered from an egomotion field.
It takes two consecutive frames as input and predicts segmentation masks for the background and multiple rigidly moving objects, which are then parameterized by 3D rigid transformations.
Our method achieves state-of-the-art performance for rigid motion segmentation on KITTI and Sintel.
arXiv Detail & Related papers (2021-01-11T04:20:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.