Temporal Event Stereo via Joint Learning with Stereoscopic Flow
- URL: http://arxiv.org/abs/2407.10831v1
- Date: Mon, 15 Jul 2024 15:43:08 GMT
- Title: Temporal Event Stereo via Joint Learning with Stereoscopic Flow
- Authors: Hoonhee Cho, Jae-Young Kang, Kuk-Jin Yoon,
- Abstract summary: Event cameras are dynamic vision sensors inspired by the biological retina.
We propose a novel temporal event stereo framework.
We have achieved state-of-the-art performance on the MVSEC and the DSEC datasets.
- Score: 44.479946706395694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras are dynamic vision sensors inspired by the biological retina, characterized by their high dynamic range, high temporal resolution, and low power consumption. These features make them capable of perceiving 3D environments even in extreme conditions. Event data is continuous across the time dimension, which allows a detailed description of each pixel's movements. To fully utilize the temporally dense and continuous nature of event cameras, we propose a novel temporal event stereo, a framework that continuously uses information from previous time steps. This is accomplished through the simultaneous training of an event stereo matching network alongside stereoscopic flow, a new concept that captures all pixel movements from stereo cameras. Since obtaining ground truth for optical flow during training is challenging, we propose a method that uses only disparity maps to train the stereoscopic flow. The performance of event-based stereo matching is enhanced by temporally aggregating information using the flows. We have achieved state-of-the-art performance on the MVSEC and the DSEC datasets. The method is computationally efficient, as it stacks previous information in a cascading manner. The code is available at https://github.com/mickeykang16/TemporalEventStereo.
Related papers
- EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - EV-MGDispNet: Motion-Guided Event-Based Stereo Disparity Estimation Network with Left-Right Consistency [4.849111230195686]
Event cameras have the potential to revolutionize the field of robot vision.
We propose EV-MGDispNet, a novel event-based stereo disparity estimation method.
Our method outperforms currently known state-of-the-art methods in terms of mean absolute error (MAE) and root mean square error (RMSE) metrics.
arXiv Detail & Related papers (2024-08-10T06:13:37Z) - Temporal-Mapping Photography for Event Cameras [5.344756442054121]
Event cameras, or Dynamic Vision Sensors (DVS), capture brightness changes as a continuous stream of "events"
Converting sparse events to dense intensity frames faithfully has long been an ill-posed problem.
In this paper, for the first time, we realize events to dense intensity image conversion using a stationary event camera in static scenes.
arXiv Detail & Related papers (2024-03-11T05:29:46Z) - An Event-Oriented Diffusion-Refinement Method for Sparse Events
Completion [36.64856578682197]
Event cameras or dynamic vision sensors (DVS) record asynchronous response to brightness changes instead of conventional intensity frames.
We propose an inventive event completion sequence approach conforming to unique characteristics of event data in both the processing stage and the output form.
Specifically, we treat event streams as 3D event clouds in thetemporal domain, develop a diffusion-based generative model to generate dense clouds in a coarse-to-fine manner, and recover exact timestamps to maintain the temporal resolution of raw data successfully.
arXiv Detail & Related papers (2024-01-06T08:09:54Z) - EGVD: Event-Guided Video Deraining [57.59935209162314]
We propose an end-to-end learning-based network to unlock the potential of the event camera for video deraining.
We build a real-world dataset consisting of rainy videos and temporally synchronized event streams.
arXiv Detail & Related papers (2023-09-29T13:47:53Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
Event-based cameras are bio-inspired sensors that capture brightness change of every pixel in an asynchronous manner.
Event streams are divided into grids in the x-y-t coordinates for both positive and negative polarity, producing a set of pillars as 3D tensor representation.
Long memory is encoded in the hidden state of adaptive convLSTMs while short memory is modeled by computing spatial-temporal correlation between event pillars.
arXiv Detail & Related papers (2023-03-17T12:12:41Z) - 3D-FlowNet: Event-based optical flow estimation with 3D representation [2.062593640149623]
Event-based cameras can overpass frame-based cameras limitations for important tasks such as high-speed motion detection.
Deep Neural Networks are not well adapted to work with event data as they are asynchronous and discrete.
We propose 3D-FlowNet, a novel network architecture that can process the 3D input representation and output optical flow estimations.
arXiv Detail & Related papers (2022-01-28T17:28:15Z) - VisEvent: Reliable Object Tracking via Collaboration of Frame and Event
Flows [93.54888104118822]
We propose a large-scale Visible-Event benchmark (termed VisEvent) due to the lack of a realistic and scaled dataset for this task.
Our dataset consists of 820 video pairs captured under low illumination, high speed, and background clutter scenarios.
Based on VisEvent, we transform the event flows into event images and construct more than 30 baseline methods.
arXiv Detail & Related papers (2021-08-11T03:55:12Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z) - Event-based Stereo Visual Odometry [42.77238738150496]
We present a solution to the problem of visual odometry from the data acquired by a stereo event-based camera rig.
We seek to maximize thetemporal consistency of stereo event-based data while using a simple and efficient representation.
arXiv Detail & Related papers (2020-07-30T15:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.