論文の概要: Offline Reinforcement Learning with Imputed Rewards
- arxiv url: http://arxiv.org/abs/2407.10839v1
- Date: Mon, 15 Jul 2024 15:53:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 14:20:24.763792
- Title: Offline Reinforcement Learning with Imputed Rewards
- Title(参考訳): インプット・リワードを用いたオフライン強化学習
- Authors: Carlo Romeo, Andrew D. Bagdanov,
- Abstract要約: 本稿では,報酬を付与した環境遷移のごく限られたサンプルから報酬信号を推定できるリワードモデルを提案する。
その結果、元のデータセットからの報酬ラベル付き遷移の1%しか使用していないため、学習した報酬モデルは残りの99%の遷移に対して報酬を付与できることがわかった。
- 参考スコア(独自算出の注目度): 8.856568375969848
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Offline Reinforcement Learning (ORL) offers a robust solution to training agents in applications where interactions with the environment must be strictly limited due to cost, safety, or lack of accurate simulation environments. Despite its potential to facilitate deployment of artificial agents in the real world, Offline Reinforcement Learning typically requires very many demonstrations annotated with ground-truth rewards. Consequently, state-of-the-art ORL algorithms can be difficult or impossible to apply in data-scarce scenarios. In this paper we propose a simple but effective Reward Model that can estimate the reward signal from a very limited sample of environment transitions annotated with rewards. Once the reward signal is modeled, we use the Reward Model to impute rewards for a large sample of reward-free transitions, thus enabling the application of ORL techniques. We demonstrate the potential of our approach on several D4RL continuous locomotion tasks. Our results show that, using only 1\% of reward-labeled transitions from the original datasets, our learned reward model is able to impute rewards for the remaining 99\% of the transitions, from which performant agents can be learned using Offline Reinforcement Learning.
- Abstract(参考訳): オフライン強化学習(ORL)は、コスト、安全性、あるいは正確なシミュレーション環境の欠如により、環境とのインタラクションが厳密に制限されなければならないアプリケーションにおいて、エージェントを訓練するための堅牢なソリューションを提供する。
実世界における人工エージェントの展開を促進する可能性にもかかわらず、オフライン強化学習は典型的には、地道的な報酬を付加した非常に多くのデモを必要とする。
したがって、最先端のORLアルゴリズムは、データスカースシナリオに適用することは困難または不可能である。
本稿では,報酬を付与した環境遷移のごく限られたサンプルから報酬信号を推定できる,単純だが効果的なリワードモデルを提案する。
報酬信号がモデル化されると、報酬のない遷移の大規模なサンプルに対して報酬をインプットするためにReward Modelを使用し、ORL技術の適用を可能にする。
いくつかのD4RL連続移動課題に対するアプローチの可能性を示す。
この結果から,従来のデータセットからの報酬ラベル付き遷移のわずか1\%を用いて,学習した報酬モデルにより,残りの99%の遷移に対する報酬をインプットすることが可能であり,そこからパフォーマンスエージェントがオフライン強化学習を用いて学習できることが示唆された。
関連論文リスト
- Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
我々は、報酬モデルと政策モデルを同時に構築するために、逆強化学習(IRL)技術を活用することを提案する。
提案アルゴリズムはIRL問題の定常解に収束することを示す。
その結果,アライメントプロセス全体を通じて報酬学習を活用することは有益であることが示唆された。
論文 参考訳(メタデータ) (2024-05-28T07:11:05Z) - Dense Reward for Free in Reinforcement Learning from Human Feedback [64.92448888346125]
我々は報酬モデルが単にスカラー出力よりも多くの情報を含んでいるという事実を活用している。
私たちは、これらの注意重みを使って、完了全体に沿って報酬を再分配します。
経験的に、トレーニングを安定化し、学習速度を加速し、実際は、より良い局所最適性をもたらす可能性があることを示す。
論文 参考訳(メタデータ) (2024-02-01T17:10:35Z) - Leveraging Optimal Transport for Enhanced Offline Reinforcement Learning
in Surgical Robotic Environments [4.2569494803130565]
我々は,少数の高品質な専門家によるデモンストレーションを用いて,オフラインの軌道に報酬を割り当てるための革新的なアルゴリズムを導入する。
このアプローチは、手作りの報酬の必要性を回避し、ポリシー学習に膨大なデータセットを活用する可能性を解き放つ。
論文 参考訳(メタデータ) (2023-10-13T03:39:15Z) - Deep Reinforcement Learning from Hierarchical Preference Design [99.46415116087259]
本稿では,特定の構造を利用することにより,報酬設計プロセスの容易性を示す。
シナリオのための階層的な報酬モデリングフレームワーク -- HERONを提案する。 (I) フィードバック信号は自然に階層構造を呈し、 (II) 報酬は希少であるが、政策学習を支援するためにあまり重要でないサロゲートフィードバックを持つ。
論文 参考訳(メタデータ) (2023-09-06T00:44:29Z) - Optimal Transport for Offline Imitation Learning [31.218468923400373]
オフライン強化学習(RL)は、実環境と対話することなく、優れた意思決定ポリシーを学習するための有望なフレームワークである。
オフライントラジェクトリに報酬を割り当てるアルゴリズムであるOptimal Transport Reward labeling (OTR)を導入する。
単一実演によるOTRは、オフラインRLの性能と地道的な報酬とを一貫して一致させることができることを示す。
論文 参考訳(メタデータ) (2023-03-24T12:45:42Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
複雑な実世界の環境でエージェントを訓練することは、桁違いに高速であることを示す。
強化学習の手法を新しい領域に適用することにより、興味深く非自明な解を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-11-23T19:17:20Z) - Handling Sparse Rewards in Reinforcement Learning Using Model Predictive
Control [9.118706387430883]
強化学習(RL)は近年,様々な分野で大きな成功を収めている。
しかし、報酬関数の設計には、エージェントが望ましい振る舞いを学べるように、詳細なドメインの専門知識と面倒な微調整が必要である。
本稿では,スパース報酬環境におけるRLエージェントのトレーニング経験源として,モデル予測制御(MPC)を提案する。
論文 参考訳(メタデータ) (2022-10-04T11:06:38Z) - Residual Reinforcement Learning from Demonstrations [51.56457466788513]
報酬信号の最大化のために,従来のフィードバックコントローラからの制御動作を適用することで,ロボット作業の課題を解決する手段として,残留強化学習(Residual reinforcement learning, RL)が提案されている。
視覚的インプットから学習するための残差定式化を拡張し,実演を用いて報酬をスパースする。
6-DoFのUR5アームと28-DoFのデキスタラスハンドのシミュレーション操作に関する実験的評価は、デモからの残留RLが、行動クローニングやRL微調整よりも柔軟に、見えない環境条件に一般化できることを実証している。
論文 参考訳(メタデータ) (2021-06-15T11:16:49Z) - Semi-supervised reward learning for offline reinforcement learning [71.6909757718301]
トレーニングエージェントは通常、報酬機能が必要ですが、報酬は実際にはほとんど利用できず、エンジニアリングは困難で手間がかかります。
限定されたアノテーションから学習し,ラベルなしデータを含む半教師付き学習アルゴリズムを提案する。
シミュレーションロボットアームを用いた実験では,動作のクローン化が大幅に向上し,真理の報奨によって達成される性能に近づいた。
論文 参考訳(メタデータ) (2020-12-12T20:06:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。