論文の概要: RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception
- arxiv url: http://arxiv.org/abs/2407.10876v2
- Date: Sat, 20 Jul 2024 15:46:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 00:12:27.275656
- Title: RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception
- Title(参考訳): RepVF:マルチタスク3次元知覚のための統一ベクトル場表現
- Authors: Chunliang Li, Wencheng Han, Junbo Yin, Sanyuan Zhao, Jianbing Shen,
- Abstract要約: 本稿では,様々な知覚タスクの表現を調和させる新しい統一表現RepVFを提案する。
RepVFは、ベクトル場を通じてシーン内の異なるターゲットの構造を特徴付け、シングルヘッドでマルチタスクの学習モデルを可能にする。
RepVF 上に構築された RFTR は,タスク間の固有性を利用したネットワークである。
- 参考スコア(独自算出の注目度): 64.80760846124858
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Concurrent processing of multiple autonomous driving 3D perception tasks within the same spatiotemporal scene poses a significant challenge, in particular due to the computational inefficiencies and feature competition between tasks when using traditional multi-task learning approaches. This paper addresses these issues by proposing a novel unified representation, RepVF, which harmonizes the representation of various perception tasks such as 3D object detection and 3D lane detection within a single framework. RepVF characterizes the structure of different targets in the scene through a vector field, enabling a single-head, multi-task learning model that significantly reduces computational redundancy and feature competition. Building upon RepVF, we introduce RFTR, a network designed to exploit the inherent connections between different tasks by utilizing a hierarchical structure of queries that implicitly model the relationships both between and within tasks. This approach eliminates the need for task-specific heads and parameters, fundamentally reducing the conflicts inherent in traditional multi-task learning paradigms. We validate our approach by combining labels from the OpenLane dataset with the Waymo Open dataset. Our work presents a significant advancement in the efficiency and effectiveness of multi-task perception in autonomous driving, offering a new perspective on handling multiple 3D perception tasks synchronously and in parallel. The code will be available at: https://github.com/jbji/RepVF
- Abstract(参考訳): 同じ時空間における複数の自律走行3次元認識タスクの同時処理は、特に従来のマルチタスク学習アプローチを使用する場合の計算不効率とタスク間の特徴競合により、大きな課題を生んでいる。
本稿では,3次元物体検出や3次元車線検出などの様々な知覚タスクの表現を調和させる,新しい統一表現RepVFを提案することにより,これらの課題に対処する。
RepVFは、ベクトル場を通じてシーン内の異なるターゲットの構造を特徴付け、計算冗長性と特徴競合を著しく低減するシングルヘッドマルチタスク学習モデルを実現する。
RepVF上に構築されたRFTRは,タスク間の関係を暗黙的にモデル化するクエリの階層構造を利用して,異なるタスク間の関係を生かしたネットワークである。
このアプローチはタスク固有のヘッダやパラメータの必要性を排除し、従来のマルチタスク学習パラダイムに固有のコンフリクトを根本的に削減する。
当社のアプローチは,OpenLaneデータセットのラベルとWaymo Openデータセットを組み合わせることで検証します。
本研究は、自律運転におけるマルチタスク認識の効率性と有効性において、複数の3次元知覚タスクを同期かつ並列に扱うための新たな視点を提供するものである。
コードは、https://github.com/jbji/RepVF.comで入手できる。
関連論文リスト
- A Point-Based Approach to Efficient LiDAR Multi-Task Perception [49.91741677556553]
PAttFormerは、ポイントクラウドにおける共同セマンティックセグメンテーションとオブジェクト検出のための効率的なマルチタスクアーキテクチャである。
他のLiDARベースのマルチタスクアーキテクチャとは異なり、提案したPAttFormerはタスク固有のポイントクラウド表現のために別の機能エンコーダを必要としない。
マルチタスク学習では,mIouでは+1.7%,mAPでは3Dオブジェクト検出では+1.7%,LiDARセマンティックセマンティックセグメンテーションは+1.7%向上した。
論文 参考訳(メタデータ) (2024-04-19T11:24:34Z) - Multi-task Learning with 3D-Aware Regularization [55.97507478913053]
本稿では,画像エンコーダから抽出した特徴を共有3D特徴空間に投影することで,複数のタスクをインタフェースする構造化3D認識正規化器を提案する。
提案手法はアーキテクチャ非依存であり,従来のマルチタスクバックボーンにプラグインすることで,性能を向上できることを示す。
論文 参考訳(メタデータ) (2023-10-02T08:49:56Z) - A Dynamic Feature Interaction Framework for Multi-task Visual Perception [100.98434079696268]
複数の共通認識課題を解決するための効率的な統合フレームワークを考案する。
これらのタスクには、インスタンスセグメンテーション、セマンティックセグメンテーション、モノクル3D検出、深さ推定が含まれる。
提案するフレームワークはD2BNetと呼ばれ,マルチタスク認識のためのパラメータ効率予測に一意なアプローチを示す。
論文 参考訳(メタデータ) (2023-06-08T09:24:46Z) - Joint 2D-3D Multi-Task Learning on Cityscapes-3D: 3D Detection,
Segmentation, and Depth Estimation [11.608682595506354]
TaskPrompterは革新的なマルチタスクプロンプトフレームワークを提供する。
i)タスク・ジェネリックな表現、ii)タスク固有の表現、iii)タスク間の相互作用の学習を統一する。
新しいベンチマークでは、モノクロ3D車両の検出、セマンティックセグメンテーション、モノクロ深度推定の予測を同時に生成するためにマルチタスクモデルが必要である。
論文 参考訳(メタデータ) (2023-04-03T13:41:35Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
本稿では,タスク固有のプロンプトを通じて視覚的見本を提示する,効果的なマルチタスクフレームワークVE-Promptを提案する。
具体的には、境界ボックスと色に基づくマーカーに基づいて視覚的な例を生成し、ターゲットカテゴリの正確な視覚的外観を提供する。
我々は変圧器をベースとしたエンコーダと畳み込み層を橋渡しし、自律運転における効率的かつ正確な統合認識を実現する。
論文 参考訳(メタデータ) (2023-03-03T08:54:06Z) - Cross-task Attention Mechanism for Dense Multi-task Learning [16.040894192229043]
我々は2次元セマンティックセグメンテーションと2つの幾何学的タスク、すなわち密度深度と表面正規度推定を共同で扱う。
相関誘導型注意と自己注意によってペアワイズなクロスタスク交換を利用する,新しいマルチタスク学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-17T17:59:45Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
我々は,共通バックボーンと独立タスク固有のヘッドで表される,密集予測タスクのためのマルチタスク環境を考える。
マルチタスク設定では,グローバルやローカルなど,さまざまな注意に基づくコンテキストを探索する。
タスクペアごとに利用可能なすべてのコンテキストのプールをサンプリングするAdaptive Task-Relational Contextモジュールを提案する。
論文 参考訳(メタデータ) (2021-04-28T16:45:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。