論文の概要: When Heterophily Meets Heterogeneity: New Graph Benchmarks and Effective Methods
- arxiv url: http://arxiv.org/abs/2407.10916v1
- Date: Mon, 15 Jul 2024 17:18:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 14:10:37.697688
- Title: When Heterophily Meets Heterogeneity: New Graph Benchmarks and Effective Methods
- Title(参考訳): Heterophilyが不均一性に出会ったとき - 新しいグラフベンチマークと効果的な方法
- Authors: Junhong Lin, Xiaojie Guo, Shuaicheng Zhang, Dawei Zhou, Yada Zhu, Julian Shun,
- Abstract要約: H2GBは、グラフのヘテロフィとヘテロジニアスの性質の両方の複雑さをまとめる新しいグラフベンチマークである。
ベンチマークには5つのドメインにまたがる9つの現実世界のデータセット、28のベースラインモデル実装、26のベンチマーク結果が含まれています。
本稿では、モジュラーグラフ変換フレームワークUnifiedGTと新しいモデル変種H2G-formerを提案する。
- 参考スコア(独自算出の注目度): 20.754843684170034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world graphs frequently present challenges for graph learning due to the presence of both heterophily and heterogeneity. However, existing benchmarks for graph learning often focus on heterogeneous graphs with homophily or homogeneous graphs with heterophily, leaving a gap in understanding how methods perform on graphs that are both heterogeneous and heterophilic. To bridge this gap, we introduce H2GB, a novel graph benchmark that brings together the complexities of both the heterophily and heterogeneity properties of graphs. Our benchmark encompasses 9 diverse real-world datasets across 5 domains, 28 baseline model implementations, and 26 benchmark results. In addition, we present a modular graph transformer framework UnifiedGT and a new model variant, H2G-former, that excels at this challenging benchmark. By integrating masked label embeddings, cross-type heterogeneous attention, and type-specific FFNs, H2G-former effectively tackles graph heterophily and heterogeneity. Extensive experiments across 26 baselines on H2GB reveal inadequacies of current models on heterogeneous heterophilic graph learning, and demonstrate the superiority of our H2G-former over existing solutions. Both the benchmark and the framework are available on GitHub (https://github.com/junhongmit/H2GB) and PyPI (https://pypi.org/project/H2GB), and documentation can be found at https://junhongmit.github.io/H2GB/.
- Abstract(参考訳): 多くの実世界のグラフは、不均一性と不均一性の両方が存在するため、グラフ学習の課題をしばしば提示する。
しかし、グラフ学習のための既存のベンチマークは、しばしばホモフィリーグラフやホモジニアスグラフとヘテロフィリーグラフに焦点を合わせ、ヘテロジニアスグラフとヘテロジニアスグラフの両方でメソッドがどのように機能するかを理解するためのギャップを残している。
このギャップを埋めるために、グラフの不均一性と不均一性の両方の複雑さをもたらす新しいグラフベンチマークであるH2GBを導入する。
ベンチマークには5つのドメインにまたがる9つの現実世界のデータセット、28のベースラインモデル実装、26のベンチマーク結果が含まれています。
さらに、モジュラーグラフ変換フレームワークUnifiedGTと新しいモデル変種であるH2G-formerが、この挑戦的なベンチマークで優れていることを示す。
マスク付きラベル埋め込み、クロスタイプヘテロジニアスアテンション、タイプ特異的FFNを統合することで、H2G-formerはグラフのヘテロフィリーとヘテロジニアリティに効果的に取り組む。
H2GB上の26のベースラインにわたる大規模な実験は、異種不均一グラフ学習における現在のモデルの不整合を明らかにし、既存のソリューションよりもH2G-formerの方が優れていることを示す。
ベンチマークとフレームワークはGitHub(https://github.com/junhongmit/H2GB)とPyPI(https://pypi.org/project/H2GB)で利用可能であり、ドキュメントはhttps://junhongmit.github.io/H2GB/で見ることができる。
関連論文リスト
- When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning [6.2167203720326025]
非教師付きヘテロジニアスグラフ表現学習(UHGRL)は,ラベルのない実用的なグラフを扱うことの重要性から注目されている。
我々はセマンティックなヘテロフィリーを定義し、この問題に対処するためにLatGRL(Latent Graphs Guided Unsupervised Representation Learning)と呼ばれる革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-01T10:25:06Z) - The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
ホモフィリ原理では、同じラベルや類似属性を持つieノードが接続される可能性が高い。
最近の研究で、GNNのパフォーマンスとNNのパフォーマンスが満足できない非自明なデータセットが特定されている。
論文 参考訳(メタデータ) (2024-07-12T18:04:32Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
異なるクラス間のホモフィリー分布の差は、ホモフィリックグラフやヘテロフィリックグラフよりも著しく大きい。
我々は、この現象を定量的に記述した、クラスホモフィリーバリアンスと呼ばれる新しい計量を導入する。
その影響を軽減するために,ホモフィリーエッジ生成グラフニューラルネットワーク(HedGe)と呼ばれる新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2024-03-15T14:26:53Z) - Hetero$^2$Net: Heterophily-aware Representation Learning on
Heterogenerous Graphs [38.858702539146385]
We present Hetero$2$Net, a heterophily-aware HGNN that includes both masked metapath prediction and masked label prediction task。
Hetero$2$Netを,ヘテロフィリーのレベルが異なる5つの実世界ヘテロジニアスグラフベンチマークで評価した。
論文 参考訳(メタデータ) (2023-10-18T02:19:12Z) - Hybrid Graph: A Unified Graph Representation with Datasets and
Benchmarks for Complex Graphs [27.24150788635981]
ハイブリッドグラフの概念を導入し、ハイブリッドグラフベンチマーク(HGB)を紹介する。
HGBには、生物学、ソーシャルメディア、eコマースなど、さまざまな領域にわたる23の現実世界のハイブリッドグラフデータセットが含まれている。
HGB上でグラフニューラルネットワーク(GNN)のトレーニングと評価を容易にするための評価フレームワークと支援フレームワークを提供する。
論文 参考訳(メタデータ) (2023-06-08T11:15:34Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
グラフを好適なGNNモデルが見つかる前に、まずホモ親和性あるいはヘテロ親和性として識別することは不可能である。
本稿では,グラフ再構成,混合フィルタ,二重グラフクラスタリングネットワークという3つの重要な要素を含むグラフクラスタリング手法を提案する。
我々の手法は異種グラフ上で他者を支配している。
論文 参考訳(メタデータ) (2023-05-03T01:49:01Z) - Single-Pass Contrastive Learning Can Work for Both Homophilic and
Heterophilic Graph [60.28340453547902]
グラフコントラッシブ・ラーニング(GCL)技術は通常、コントラッシブ・ロスを構築するために単一のインスタンスに対して2つのフォワードパスを必要とする。
既存のGCLアプローチは、強力なパフォーマンス保証を提供していない。
我々はSingle-Pass Graph Contrastive Learning法(SP-GCL)を実装した。
経験的に、SP-GCLが学んだ機能は、計算オーバーヘッドを著しく少なくして、既存の強いベースラインにマッチまたは性能を向上することができる。
論文 参考訳(メタデータ) (2022-11-20T07:18:56Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
本稿では,幾何学コントラスト学習(Geometry Contrastive Learning, GCL)と呼ばれる,新しい自己指導型学習手法を提案する。
GCLはユークリッドと双曲的な視点からヘテロジニアスグラフを同時に見ることができ、リッチな意味論と複雑な構造をモデル化する能力の強い融合を目指している。
4つのベンチマークデータセットの大規模な実験は、提案手法が強いベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-25T03:54:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Simplified Graph Convolution with Heterophily [25.7577503312319]
単純グラフ畳み込み(SGC)は異種グラフ(非同種グラフ)には有効でないことを示す。
本稿では、同好性グラフ構造と異好性グラフ構造の両方に適応できる適応的単純グラフ畳み込み(ASGC)を提案する。
論文 参考訳(メタデータ) (2022-02-08T20:52:08Z) - Heterogeneous Graph Transformer [49.675064816860505]
Webスケールの不均一グラフモデリングのための不均一グラフ変換器(HGT)アーキテクチャ
動的ヘテロジニアスグラフを扱うために、HGTに相対時間符号化手法を導入する。
Web スケールのグラフデータを扱うため,ヘテロジニアスなミニバッチグラフサンプリングアルゴリズム--HGSampling--を設計し,効率的かつスケーラブルなトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-03T04:49:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。