Learning Autonomy in Management of Wireless Random Networks
- URL: http://arxiv.org/abs/2106.07984v1
- Date: Tue, 15 Jun 2021 09:03:28 GMT
- Title: Learning Autonomy in Management of Wireless Random Networks
- Authors: Hoon Lee, Sang Hyun Lee, Tony Q. S. Quek
- Abstract summary: This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
- Score: 102.02142856863563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a machine learning strategy that tackles a distributed
optimization task in a wireless network with an arbitrary number of randomly
interconnected nodes. Individual nodes decide their optimal states with
distributed coordination among other nodes through randomly varying backhaul
links. This poses a technical challenge in distributed universal optimization
policy robust to a random topology of the wireless network, which has not been
properly addressed by conventional deep neural networks (DNNs) with rigid
structural configurations. We develop a flexible DNN formalism termed
distributed message-passing neural network (DMPNN) with forward and backward
computations independent of the network topology. A key enabler of this
approach is an iterative message-sharing strategy through arbitrarily connected
backhaul links. The DMPNN provides a convergent solution for iterative
coordination by learning numerous random backhaul interactions. The DMPNN is
investigated for various configurations of the power control in wireless
networks, and intensive numerical results prove its universality and viability
over conventional optimization and DNN approaches.
Related papers
- Multi-Flow Transmission in Wireless Interference Networks: A Convergent
Graph Learning Approach [9.852567834643292]
We introduce a novel algorithm called Dual-stage Interference-Aware Multi-flow Optimization of Network Data-signals (DIAMOND)
A centralized stage computes the multi-flow transmission strategy using a novel design of graph neural network (GNN) reinforcement learning (RL) routing agent.
Then, a distributed stage improves the performance based on a novel design of distributed learning updates.
arXiv Detail & Related papers (2023-03-27T18:49:47Z) - Flex-Net: A Graph Neural Network Approach to Resource Management in
Flexible Duplex Networks [11.89735327420275]
This work investigates the sum-rate of flexible networks without static time scheduling.
Motivated by the recent success of Graph Networks Networks (GNNs) in solving NP-hard wireless resource management problems, we propose a novel GNN architecture, named Flex-Net.
arXiv Detail & Related papers (2023-01-20T12:49:21Z) - Spiking Generative Adversarial Networks With a Neural Network
Discriminator: Local Training, Bayesian Models, and Continual Meta-Learning [31.78005607111787]
Training neural networks to reproduce spiking patterns is a central problem in neuromorphic computing.
This work proposes to train SNNs so as to match spiking signals rather than individual spiking signals.
arXiv Detail & Related papers (2021-11-02T17:20:54Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
This paper studies the higher-level problem of enabling fast adaption of the power control policy to time-varying topologies.
We apply first-order meta-learning on data from multiple topologies with the aim of optimizing for a few-shot adaptation to new network configurations.
arXiv Detail & Related papers (2021-05-02T12:43:10Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks [122.42812336946756]
We design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs)
We capture the asynchrony by modeling the activation pattern as a characteristic of each node and train a policy-based resource allocation method.
arXiv Detail & Related papers (2020-11-05T03:38:36Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.