論文の概要: Toward Availability Attacks in 3D Point Clouds
- arxiv url: http://arxiv.org/abs/2407.11011v1
- Date: Wed, 26 Jun 2024 08:13:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:29:47.738107
- Title: Toward Availability Attacks in 3D Point Clouds
- Title(参考訳): 3Dポイントクラウドのアベイラビリティーアタックに向けて
- Authors: Yifan Zhu, Yibo Miao, Yinpeng Dong, Xiao-Shan Gao,
- Abstract要約: 距離正規化による2次元アベイラビリティーアタックを3次元点群に直接適用することは, 縮退の影響を受けやすいことを示す。
特徴空間に新たなショートカットを生成するFC-EM(Feature Collision Error-Minimization)法を提案する。
典型的なポイントクラウドデータセット,3次元頭蓋内動脈瘤医療データセット,および3次元顔データセットを用いて,我々のアプローチの優位性と実用性を検証する。
- 参考スコア(独自算出の注目度): 28.496421433836908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the great progress of 3D vision, data privacy and security issues in 3D deep learning are not explored systematically. In the domain of 2D images, many availability attacks have been proposed to prevent data from being illicitly learned by unauthorized deep models. However, unlike images represented on a fixed dimensional grid, point clouds are characterized as unordered and unstructured sets, posing a significant challenge in designing an effective availability attack for 3D deep learning. In this paper, we theoretically show that extending 2D availability attacks directly to 3D point clouds under distance regularization is susceptible to the degeneracy, rendering the generated poisons weaker or even ineffective. This is because in bi-level optimization, introducing regularization term can result in update directions out of control. To address this issue, we propose a novel Feature Collision Error-Minimization (FC-EM) method, which creates additional shortcuts in the feature space, inducing different update directions to prevent the degeneracy of bi-level optimization. Moreover, we provide a theoretical analysis that demonstrates the effectiveness of the FC-EM attack. Extensive experiments on typical point cloud datasets, 3D intracranial aneurysm medical dataset, and 3D face dataset verify the superiority and practicality of our approach. Code is available at https://github.com/hala64/fc-em.
- Abstract(参考訳): 3Dビジョンの大きな進歩にもかかわらず、3Dディープラーニングにおけるデータプライバシとセキュリティ問題は、体系的に検討されていない。
2次元画像の領域では、不正な深層モデルによる不正な学習を防ぐために、多くのアベイラビリティーアタックが提案されている。
しかし、固定次元格子上に表現される画像とは異なり、点雲は非順序集合と非構造集合として特徴付けられ、3次元深層学習に有効なアベイラビリティーアタックを設計する上で大きな課題となっている。
本稿では, 距離正規化による2次元アベイラビリティー・アタックを3次元点群に直接拡張することは, 縮退の影響を受けやすいことを理論的に示す。
これは、双方向最適化において、正規化項を導入することで、制御不能な更新方向が生じるためである。
この問題に対処するために,特徴空間に新たなショートカットを発生させる新しい特徴衝突誤差最小化法 (FC-EM) を提案する。
さらに,FC-EM攻撃の有効性を示す理論的解析を行った。
典型的なポイントクラウドデータセット,3次元頭蓋内大動脈瘤医療データセット,および3次元顔データセットに対する大規模な実験により,我々のアプローチの優位性と実用性を検証する。
コードはhttps://github.com/hala64/fc-emで入手できる。
関連論文リスト
- Hide in Thicket: Generating Imperceptible and Rational Adversarial
Perturbations on 3D Point Clouds [62.94859179323329]
3Dポイントクラウド分類のための点操作に基づくアドリアック手法により、3Dモデルの脆弱性を明らかにした。
そこで本研究では,2段階の攻撃領域探索を行うHT-ADV法を提案する。
我々は,良性再サンプリングと良性剛性変換を用いることで,不受容性への犠牲がほとんどなく,身体的敵意の強さをさらに高めることができることを示唆する。
論文 参考訳(メタデータ) (2024-03-08T12:08:06Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
クラス増分学習(class-incremental learning)は、モデルが限られたデータに基づいて漸進的にトレーニングされている場合、破滅的な忘れの問題を軽減することを目的としている。
冗長特徴除去器(RFE)と空間ノイズ補償器(SNC)の2つの新しいコンポーネントを紹介する。
既存の3次元データセットの不均衡を考慮し、3次元FSCILモデルのより微妙な評価を提供する新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-28T14:52:07Z) - AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training [64.14759275211115]
そこで本研究では,DART3Dと呼ばれるモノクル3次元物体検出のための,深度対応の頑健な対向学習法を提案する。
我々の敵の訓練アプローチは、本質的な不確実性に乗じて、敵の攻撃に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2023-09-03T07:05:32Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
ドメイン外データへの一般化の改善に注力する。
対象を逆向きに変形させるベクトルの集合を学習する。
本研究では,学習したサンプル非依存ベクトルをモデルトレーニング時に利用可能なオブジェクトに適用することにより,対数拡大を行う。
論文 参考訳(メタデータ) (2023-08-29T17:58:55Z) - 3DHacker: Spectrum-based Decision Boundary Generation for Hard-label 3D
Point Cloud Attack [64.83391236611409]
そこで本研究では,クラスラベルの知識にのみ依存して,敵対的なサンプルを生成する新しい3D攻撃手法を提案する。
3DHackerは、難しいハードラベル設定でも、既存の3D攻撃の攻撃性能と敵のクオリティを競争力で上回っている。
論文 参考訳(メタデータ) (2023-08-15T03:29:31Z) - PointDP: Diffusion-driven Purification against Adversarial Attacks on 3D
Point Cloud Recognition [29.840946461846]
3D Pointクラウドは、自律運転、ロボティクス、医療画像など、多くの現実世界のアプリケーションにおいて重要なデータ表現である。
ディープラーニングは、敵の攻撃に対する脆弱性で有名だ。
我々は,拡散モデルを利用して3次元敵攻撃を防御する浄化戦略であるPointDPを提案する。
論文 参考訳(メタデータ) (2022-08-21T04:49:17Z) - Advancing 3D Medical Image Analysis with Variable Dimension Transform
based Supervised 3D Pre-training [45.90045513731704]
本稿では,革新的でシンプルな3Dネットワーク事前学習フレームワークを再考する。
再設計された3Dネットワークアーキテクチャにより、データ不足の問題に対処するために、修正された自然画像が使用される。
4つのベンチマークデータセットに関する総合的な実験により、提案した事前学習モデルが収束を効果的に加速できることが示されている。
論文 参考訳(メタデータ) (2022-01-05T03:11:21Z) - Generating Unrestricted 3D Adversarial Point Clouds [9.685291478330054]
3Dポイントクラウドのディープラーニングは、いまだに敵の攻撃に弱い。
本稿では,現実的な3D点雲を生成するために,AdvGCGAN(Adversarial Graph-Convolutional Generative Adversarial Network)を提案する。
論文 参考訳(メタデータ) (2021-11-17T08:30:18Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Semi-supervised 3D Object Detection via Adaptive Pseudo-Labeling [18.209409027211404]
3次元物体検出はコンピュータビジョンにおいて重要な課題である。
既存のほとんどのメソッドでは、多くの高品質な3Dアノテーションが必要です。
本研究では,屋外3次元物体検出タスクのための擬似ラベルに基づく新しい半教師付きフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-15T02:58:43Z) - PointBA: Towards Backdoor Attacks in 3D Point Cloud [31.210502946247498]
3dのバックドア攻撃を,3dデータとネットワークのユニークな特性を利用する統一フレームワークで提示する。
3D深層モデルの堅牢性向上のベースラインとして、3Dポイントクラウドにおけるバックドアアタックの提案が期待されます。
論文 参考訳(メタデータ) (2021-03-30T04:49:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。