Direct-Inverse Prompting: Analyzing LLMs' Discriminative Capacity in Self-Improving Generation
- URL: http://arxiv.org/abs/2407.11017v1
- Date: Thu, 27 Jun 2024 02:26:47 GMT
- Title: Direct-Inverse Prompting: Analyzing LLMs' Discriminative Capacity in Self-Improving Generation
- Authors: Jihyun Janice Ahn, Ryo Kamoi, Lu Cheng, Rui Zhang, Wenpeng Yin,
- Abstract summary: Even the most advanced LLMs experience uncertainty in their outputs, often producing varied results on different runs or when faced with minor changes in input.
We propose and analyze three discriminative prompts: direct, inverse, and hybrid.
Our insights reveal which discriminative prompt is most promising and when to use it.
- Score: 15.184067502284007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mainstream LLM research has primarily focused on enhancing their generative capabilities. However, even the most advanced LLMs experience uncertainty in their outputs, often producing varied results on different runs or when faced with minor changes in input, despite no substantial change in content. Given multiple responses from the same LLM to the same input, we advocate leveraging the LLMs' discriminative capability to reduce this generative uncertainty, aiding in identifying the correct answers. Specifically, we propose and analyze three discriminative prompts: direct, inverse, and hybrid, to explore the potential of both closed-source and open-source LLMs in self-improving their generative performance on two benchmark datasets. Our insights reveal which discriminative prompt is most promising and when to use it. To our knowledge, this is the first work to systematically analyze LLMs' discriminative capacity to address generative uncertainty.
Related papers
- SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
We develop a novel benchmark to assess the generalization of large language model (LLM) safety across various tasks and prompt types.
This benchmark integrates both generative and discriminative evaluation tasks and includes extended data to examine the impact of prompt engineering and jailbreak on LLM safety.
Our assessment reveals that most LLMs perform worse on discriminative tasks than generative ones, and are highly susceptible to prompts, indicating poor generalization in safety alignment.
arXiv Detail & Related papers (2024-10-29T11:47:01Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - SELF-[IN]CORRECT: LLMs Struggle with Discriminating Self-Generated Responses [49.148206387394936]
We show that models are not reliably better at discriminating among previously-generated alternatives than generating initial responses.
This finding challenges the notion that LLMs may be able to enhance their performance only through their own judgment.
arXiv Detail & Related papers (2024-04-04T20:27:37Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Don't Hallucinate, Abstain: Identifying LLM Knowledge Gaps via Multi-LLM Collaboration [39.603649838876294]
We study approaches to identify LLM knowledge gaps and abstain from answering questions when knowledge gaps are present.
Motivated by their failures in self-reflection and over-reliance on held-out sets, we propose two novel approaches.
arXiv Detail & Related papers (2024-02-01T06:11:49Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
The proliferation of open-source Large Language Models (LLMs) has highlighted the urgent need for comprehensive evaluation methods.
We introduce a new benchmarking approach for LLMs that integrates uncertainty quantification.
Our findings reveal that: I) LLMs with higher accuracy may exhibit lower certainty; II) Larger-scale LLMs may display greater uncertainty compared to their smaller counterparts; and III) Instruction-finetuning tends to increase the uncertainty of LLMs.
arXiv Detail & Related papers (2024-01-23T14:29:17Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method [36.24876571343749]
Large Language Models (LLMs) have shown great potential in Natural Language Processing (NLP) tasks.
Recent literature reveals that LLMs generate nonfactual responses intermittently.
We propose a novel self-detection method to detect which questions that a LLM does not know that are prone to generate nonfactual results.
arXiv Detail & Related papers (2023-10-27T06:22:14Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.