A mathematical framework of intelligence and consciousness based on Riemannian Geometry
- URL: http://arxiv.org/abs/2407.11024v5
- Date: Sun, 10 Nov 2024 08:46:40 GMT
- Title: A mathematical framework of intelligence and consciousness based on Riemannian Geometry
- Authors: Meng Lu,
- Abstract summary: Understanding intelligence is a central pursuit in neuroscience, cognitive science, and artificial intelligence.
Recent advancements in geometric analysis have revealed new insights into high-dimensional information representation and organisation.
This manuscript proposes a mathematical framework to describe the structure and dynamics of intelligence and consciousness.
- Score: 1.9580473532948397
- License:
- Abstract: Understanding intelligence is a central pursuit in neuroscience, cognitive science, and artificial intelligence. Intelligence encompasses learning, problem-solving, creativity, and even consciousness. Recent advancements in geometric analysis have revealed new insights into high-dimensional information representation and organisation, exposing intrinsic data structures and dynamic processes within neural and artificial systems. However, a comprehensive framework that unifies the static and dynamic aspects of intelligence is still lacking. This manuscript proposes a mathematical framework based on Riemannian geometry to describe the structure and dynamics of intelligence and consciousness. Intelligence elements are conceptualised as tokens embedded in a high-dimensional space. The learned token embeddings capture the interconnections of tokens across various scenarios and tasks, forming manifolds in the intelligence space. Thought flow is depicted as the sequential activation of tokens along geodesics within these manifolds. During the navigation of geodesics, consciousness, as a self-referential process, perceives the thought flow, evaluates it against predictions, and provides feedback through prediction errors, adjusting the geodesic: non-zero prediction errors, such as learning, lead to the restructuring of the curved manifolds, thus changing the geodesic of thought flow. This dynamic interaction integrates new information, evolves the geometry and facilitates learning. The geometry of intelligence guides consciousness, and consciousness structures the geometry of intelligence. By integrating geometric concepts, this proposed theory offers a unified, mathematically framework for describing the structure and dynamics of intelligence and consciousness. Applicable to biological and artificial intelligence, this framework may pave the way for future research and empirical validation.
Related papers
- A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods.
Despite the impressive advancements achieved by deep learning models, they still have shortcomings in abstract reasoning and causal understanding.
arXiv Detail & Related papers (2024-01-03T09:46:36Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
We review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade.
Recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning.
arXiv Detail & Related papers (2022-12-20T18:46:16Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
We study the role of conceptualization in commonsense reasoning, and formulate a framework to replicate human conceptual induction.
We apply the framework to ATOMIC, a large-scale human-annotated CKG, aided by the taxonomy Probase.
arXiv Detail & Related papers (2022-06-03T12:24:49Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
We present a new cognitive architecture that combines two neurobiologically plausible, computational models.
We aim to develop a cognitive architecture that has the power of modern machine learning techniques.
arXiv Detail & Related papers (2022-03-31T04:44:28Z) - A Mathematical Approach to Constraining Neural Abstraction and the
Mechanisms Needed to Scale to Higher-Order Cognition [0.0]
Artificial intelligence has made great strides in the last decade but still falls short of the human brain, the best-known example of intelligence.
Not much is known of the neural processes that allow the brain to make the leap to achieve so much from so little.
This paper proposes a mathematical approach using graph theory and spectral graph theory, to hypothesize how to constrain these neural clusters of information.
arXiv Detail & Related papers (2021-08-12T02:13:22Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
More brain-like capacities may demand new theories, models, and methods for designing artificial learning systems.
This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
arXiv Detail & Related papers (2021-05-15T19:49:32Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
We review examples of geometrical approaches providing insight into the function of biological and artificial neural networks.
Neural population geometry has the potential to unify our understanding of structure and function in biological and artificial neural networks.
arXiv Detail & Related papers (2021-04-14T18:10:34Z) - Mapping computational thinking mindsets between educational levels with
cognitive network science [0.0]
We show how computational cognitive science can be used to reconstruct and analyse the structure of computational thinking mindsets.
As a case study, we investigate cognitive networks tied to key concepts of computational thinking provided by: (i) 159 high school students enrolled in a science curriculum and (ii) 59 researchers in complex systems and simulations.
arXiv Detail & Related papers (2020-07-18T10:51:21Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.