Precise and Efficient Orbit Prediction in LEO with Machine Learning using Exogenous Variables
- URL: http://arxiv.org/abs/2407.11026v2
- Date: Sat, 27 Jul 2024 22:07:42 GMT
- Title: Precise and Efficient Orbit Prediction in LEO with Machine Learning using Exogenous Variables
- Authors: Francisco Caldas, Cláudia Soares,
- Abstract summary: The increasing volume of space objects in Earth's orbit presents a significant challenge for Space Situational Awareness (SSA)
accurate orbit prediction is crucial to anticipate the position and velocity of space objects, for collision avoidance and space debris mitigation.
We show how the use of machine learning and time-series techniques can produce low positioning errors at a very low computational cost.
- Score: 1.9336815376402723
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The increasing volume of space objects in Earth's orbit presents a significant challenge for Space Situational Awareness (SSA). And in particular, accurate orbit prediction is crucial to anticipate the position and velocity of space objects, for collision avoidance and space debris mitigation. When performing Orbit Prediction (OP), it is necessary to consider the impact of non-conservative forces, such as atmospheric drag and gravitational perturbations, that contribute to uncertainty around the future position of spacecraft and space debris alike. Conventional propagator methods like the SGP4 inadequately account for these forces, while numerical propagators are able to model the forces at a high computational cost. To address these limitations, we propose an orbit prediction algorithm utilizing machine learning. This algorithm forecasts state vectors on a spacecraft using past positions and environmental variables like atmospheric density from external sources. The orbital data used in the paper is gathered from precision ephemeris data from the International Laser Ranging Service (ILRS), for the period of almost a year. We show how the use of machine learning and time-series techniques can produce low positioning errors at a very low computational cost, thus significantly improving SSA capabilities by providing faster and reliable orbit determination for an ever increasing number of space objects.
Related papers
- Extralonger: Toward a Unified Perspective of Spatial-Temporal Factors for Extra-Long-Term Traffic Forecasting [69.4265346261936]
We introduce Extralonger, which unifies temporal and spatial factors.
It notably extends the prediction horizon to a week on real-world benchmarks.
It sets new standards in long-term and extra-long-term scenarios.
arXiv Detail & Related papers (2024-10-30T04:28:20Z) - Structure from Motion-based Motion Estimation and 3D Reconstruction of Unknown Shaped Space Debris [3.037387520023979]
This paper proposes the Structure from Motion-based algorithm to perform unknown shaped space debris motion estimation with limited resources.
The method is validated with the realistic image dataset generated by the microgravity experiment in a 2D air-floating testbed and 3D kinematic simulation.
arXiv Detail & Related papers (2024-08-02T06:18:39Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Machine Learning in Orbit Estimation: a Survey [1.9336815376402723]
It is estimated that around one million objects larger than one cm are currently orbiting the Earth.
Current approximate physics-based methods have errors in the order of kilometers for seven-day predictions.
We provide an overview of the work in applying Machine Learning for Orbit Determination, Orbit Prediction, and atmospheric density modeling.
arXiv Detail & Related papers (2022-07-19T00:17:27Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - Time-Optimal Planning for Quadrotor Waypoint Flight [50.016821506107455]
Planning time-optimal trajectories at the actuation limit of a quadrotor is an open problem.
We propose a solution while exploiting the full quadrotor's actuator potential.
We validate our method in real-world flights in one of the world's largest motion-capture systems.
arXiv Detail & Related papers (2021-08-10T09:26:43Z) - Towards Automated Satellite Conjunction Management with Bayesian Deep
Learning [0.0]
Low Earth orbit is a junkyard of discarded rocket bodies, dead satellites, and millions of pieces of debris from collisions and explosions.
With a speed of 28,000 km/h, collisions in these orbits can generate fragments and potentially trigger a cascade of more collisions known as the Kessler syndrome.
We introduce a Bayesian deep learning approach to this problem, and develop recurrent neural network architectures (LSTMs) that work with time series of conjunction data messages.
arXiv Detail & Related papers (2020-12-23T02:16:54Z) - Spacecraft Collision Risk Assessment with Probabilistic Programming [0.0]
Over 34,000 objects bigger than 10 cm in length are known to orbit Earth.
Among them, only a small percentage are active satellites, while the rest of the population is made of dead satellites, rocket bodies, and debris that pose a collision threat to operational spacecraft.
We build a novel physics-based probabilistic generative model for synthetically generating conjunction data messages.
arXiv Detail & Related papers (2020-12-18T14:26:08Z) - Imitation Learning for Autonomous Trajectory Learning of Robot Arms in
Space [13.64392246529041]
Concept of programming by demonstration or imitation learning is used for trajectory planning of manipulators mounted on small spacecraft.
For greater autonomy in future space missions and minimal human intervention through ground control, a robot arm having 7-Degrees of Freedom (DoF) is envisaged for carrying out multiple tasks like debris removal, on-orbit servicing and assembly.
arXiv Detail & Related papers (2020-08-10T10:18:04Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.