A Geometric Framework for Adversarial Vulnerability in Machine Learning
- URL: http://arxiv.org/abs/2407.11029v1
- Date: Wed, 3 Jul 2024 11:01:15 GMT
- Title: A Geometric Framework for Adversarial Vulnerability in Machine Learning
- Authors: Brian Bell,
- Abstract summary: This work starts with the intention of using mathematics to understand the intriguing vulnerability observed by citetszegedy2013 within artificial neural networks.
Along the way, we will develop some novel tools with applications far outside of just the adversarial domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This work starts with the intention of using mathematics to understand the intriguing vulnerability observed by ~\citet{szegedy2013} within artificial neural networks. Along the way, we will develop some novel tools with applications far outside of just the adversarial domain. We will do this while developing a rigorous mathematical framework to examine this problem. Our goal is to build out theory which can support increasingly sophisticated conjecture about adversarial attacks with a particular focus on the so called ``Dimpled Manifold Hypothesis'' by ~\citet{shamir2021dimpled}. Chapter one will cover the history and architecture of neural network architectures. Chapter two is focused on the background of adversarial vulnerability. Starting from the seminal paper by ~\citet{szegedy2013} we will develop the theory of adversarial perturbation and attack. Chapter three will build a theory of persistence that is related to Ricci Curvature, which can be used to measure properties of decision boundaries. We will use this foundation to make a conjecture relating adversarial attacks. Chapters four and five represent a sudden and wonderful digression that examines an intriguing related body of theory for spatial analysis of neural networks as approximations of kernel machines and becomes a novel theory for representing neural networks with bilinear maps. These heavily mathematical chapters will set up a framework and begin exploring applications of what may become a very important theoretical foundation for analyzing neural network learning with spatial and geometric information. We will conclude by setting up our new methods to address the conjecture from chapter 3 in continuing research.
Related papers
- Towards a Categorical Foundation of Deep Learning: A Survey [0.0]
This thesis is a survey that covers some recent work attempting to study machine learning categorically.
acting as a lingua franca of mathematics and science, category theory might be able to give a unifying structure to the field of machine learning.
arXiv Detail & Related papers (2024-10-07T13:11:16Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures.
Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm.
This article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models.
arXiv Detail & Related papers (2024-07-03T14:07:41Z) - A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
We study the case of non-differentiable activation functions, such as ReLU.
Two recent works introduced a geometric framework to study neural networks.
We illustrate our findings with some numerical experiments on classification of images and thermodynamic problems.
arXiv Detail & Related papers (2024-04-09T08:11:46Z) - Rigor with Machine Learning from Field Theory to the Poincar\'e
Conjecture [0.0]
We discuss techniques for obtaining rigor in the natural sciences with machine learning.
Non-rigorous methods may lead to rigorous results via conjecture generation or verification by reinforcement learning.
One can also imagine building direct bridges between machine learning theory and either mathematics or theoretical physics.
arXiv Detail & Related papers (2024-02-20T19:00:59Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
We show that dimensionality and quasi-orthogonality of neural networks' feature space may jointly serve as network's performance discriminants.
Our findings suggest important relationships between the networks' final performance and properties of their randomly initialised feature spaces.
arXiv Detail & Related papers (2022-03-30T21:47:32Z) - Information Flow in Deep Neural Networks [0.6922389632860545]
There is no comprehensive theoretical understanding of how deep neural networks work or are structured.
Deep networks are often seen as black boxes with unclear interpretations and reliability.
This work aims to apply principles and techniques from information theory to deep learning models to increase our theoretical understanding and design better algorithms.
arXiv Detail & Related papers (2022-02-10T23:32:26Z) - Envisioning Future Deep Learning Theories: Some Basic Concepts and Characteristics [30.365274034429508]
We argue that a future deep learning theory should inherit three characteristics: a textitarchhierically structured network architecture, parameters textititeratively optimized using gradient-based methods, and information from the data that evolves textitcompressively
We integrate these characteristics into a graphical model called textitneurashed, which effectively explains some common empirical patterns in deep learning.
arXiv Detail & Related papers (2021-12-17T19:51:26Z) - A Study of the Mathematics of Deep Learning [1.14219428942199]
"Deep Learning"/"Deep Neural Nets" is a technological marvel that is now increasingly deployed at the cutting-edge of artificial intelligence tasks.
This thesis takes several steps towards building strong theoretical foundations for these new paradigms of deep-learning.
arXiv Detail & Related papers (2021-04-28T22:05:54Z) - Recent advances in deep learning theory [104.01582662336256]
This paper reviews and organizes the recent advances in deep learning theory.
The literature is categorized in six groups: (1) complexity and capacity-based approaches for analysing the generalizability of deep learning; (2) differential equations and their dynamic systems for modelling gradient descent and its variants; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; and (5) theoretical foundations of several special structures in network architectures.
arXiv Detail & Related papers (2020-12-20T14:16:41Z) - Optimism in the Face of Adversity: Understanding and Improving Deep
Learning through Adversarial Robustness [63.627760598441796]
We provide an in-depth review of the field of adversarial robustness in deep learning.
We highlight the intuitive connection between adversarial examples and the geometry of deep neural networks.
We provide an overview of the main emerging applications of adversarial robustness beyond security.
arXiv Detail & Related papers (2020-10-19T16:03:46Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.