Hybrid-Generative Diffusion Models for Attack-Oriented Twin Migration in Vehicular Metaverses
- URL: http://arxiv.org/abs/2407.11036v1
- Date: Fri, 5 Jul 2024 11:11:33 GMT
- Title: Hybrid-Generative Diffusion Models for Attack-Oriented Twin Migration in Vehicular Metaverses
- Authors: Yingkai Kang, Jinbo Wen, Jiawen Kang, Tao Zhang, Hongyang Du, Dusit Niyato, Rong Yu, Shengli Xie,
- Abstract summary: Vehicle Twins (VTs) are digital twins that provide immersive virtual services for Vehicular Metaverse Users (VMUs)
High mobility of vehicles, uneven deployment of edge servers, and potential security threats pose challenges to achieving efficient and reliable VT migrations.
We propose a secure and reliable VT migration framework in vehicular metaverses.
- Score: 58.264499654343226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vehicular metaverse is envisioned as a blended immersive domain that promises to bring revolutionary changes to the automotive industry. As a core component of vehicular metaverses, Vehicle Twins (VTs) are digital twins that cover the entire life cycle of vehicles, providing immersive virtual services for Vehicular Metaverse Users (VMUs). Vehicles with limited resources offload the computationally intensive tasks of constructing and updating VTs to edge servers and migrate VTs between these servers, ensuring seamless and immersive experiences for VMUs. However, the high mobility of vehicles, uneven deployment of edge servers, and potential security threats pose challenges to achieving efficient and reliable VT migrations. To address these issues, we propose a secure and reliable VT migration framework in vehicular metaverses. Specifically, we design a two-layer trust evaluation model to comprehensively evaluate the reputation value of edge servers in the network communication and interaction layers. Then, we model the VT migration problem as a partially observable Markov decision process and design a hybrid-Generative Diffusion Model (GDM) algorithm based on deep reinforcement learning to generate optimal migration decisions by taking hybrid actions (i.e., continuous actions and discrete actions). Numerical results demonstrate that the hybrid-GDM algorithm outperforms the baseline algorithms, showing strong adaptability in various settings and highlighting the potential of the hybrid-GDM algorithm for addressing various optimization issues in vehicular metaverses.
Related papers
- Diffusion-based Auction Mechanism for Efficient Resource Management in 6G-enabled Vehicular Metaverses [57.010829427434516]
In 6G-enable Vehicular Metaverses, vehicles are represented by Vehicle Twins (VTs), which serve as digital replicas of physical vehicles.
VT tasks are resource-intensive and need to be offloaded to ground Base Stations (BSs) for fast processing.
We propose a learning-based Modified Second-Bid (MSB) auction mechanism to optimize resource allocation between ground BSs and UAVs.
arXiv Detail & Related papers (2024-11-01T04:34:54Z) - Diffusion-based Reinforcement Learning for Dynamic UAV-assisted Vehicle Twins Migration in Vehicular Metaverses [11.608114188345692]
Vehicle Twins (VTs) are the digital twins of physical vehicles to enable vehicular Metaverses services.
Air-ground integrated networks can relieve communication pressure on ground transportation networks and provide 6G-enabled vehicular Metaverses services offloading.
We propose a dynamic Unmanned Aerial Vehicle (UAV)-assisted VT migration framework in air-ground integrated networks.
arXiv Detail & Related papers (2024-06-08T09:53:56Z) - Blockchain-based Pseudonym Management for Vehicle Twin Migrations in Vehicular Edge Metaverse [73.79237826420925]
Vehicle Twins (VTs) provide valuable metaverse services to improve driving safety and on-board satisfaction for VMUs throughout journeys.
To maintain uninterrupted metaverse experiences, VTs must be migrated among edge servers following the movements of vehicles.
This can raise concerns about privacy breaches during the dynamic communications among vehicular edge metaverses.
Existing pseudonym management methods fall short in meeting the extensive pseudonym demands in vehicular edge metaverses.
arXiv Detail & Related papers (2024-03-22T15:31:37Z) - Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses.
We propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses.
arXiv Detail & Related papers (2024-01-18T02:14:13Z) - Privacy Attacks and Defenses for Digital Twin Migrations in Vehicular Metaverses [40.75866071306496]
Vehicular Twins (VTs) are digital replicas of Vehicular Metaverse Users (VMUs)
VTs are established and maintained in RoadSide Units (RSUs) with sufficient computing and storage resources.
During VT migrations, physical-virtual synchronization and massive communications among VTs may cause identity and location privacy disclosures.
We propose a VMU-VT dual pseudonym scheme and a synchronous pseudonym change framework to defend against these attacks.
arXiv Detail & Related papers (2023-09-01T14:14:33Z) - A Hybrid Framework of Reinforcement Learning and Convex Optimization for
UAV-Based Autonomous Metaverse Data Collection [16.731929552692524]
This paper considers a UAV-assisted Metaverse network, in which UAVs extend the coverage of the base station (BS) to collect the Metaverse data generated at roadside units (RSUs)
To improve the data collection efficiency, resource allocation and trajectory control are integrated into the system model.
Based on the proposed UAV-assisted Metaverse network system model, we design a hybrid framework with reinforcement learning and convex optimization to cooperatively solve the time-sequential optimization problem.
arXiv Detail & Related papers (2023-05-29T11:49:20Z) - Generative AI-empowered Effective Physical-Virtual Synchronization in
the Vehicular Metaverse [129.8037449161817]
We propose a generative AI-empowered physical-virtual synchronization framework for the vehicular Metaverse.
In virtual-to-physical synchronization, MARs customize diverse and personal AR recommendations via generative AI models based on user preferences.
arXiv Detail & Related papers (2023-01-18T16:25:42Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
We build a holistic attention model, namely V2X-ViT, to fuse information across on-road agents.
V2X-ViT consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention.
To validate our approach, we create a large-scale V2X perception dataset.
arXiv Detail & Related papers (2022-03-20T20:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.