Show, Don't Tell: Evaluating Large Language Models Beyond Textual Understanding with ChildPlay
- URL: http://arxiv.org/abs/2407.11068v5
- Date: Thu, 27 Feb 2025 21:47:06 GMT
- Title: Show, Don't Tell: Evaluating Large Language Models Beyond Textual Understanding with ChildPlay
- Authors: Gonçalo Hora de Carvalho, Oscar Knap, Robert Pollice,
- Abstract summary: We develop a benchmark to assess the generalization of state-of-the-art large language models on problems beyond linguistic tasks.<n>Using simple games like Tic-Tac-Toe, Connect Four, Battleship, and a Shape Recognition Game, we test strategic capabilities and spatial reasoning.<n>Our results show that GPT models provide meaningful responses for several tasks but, generally, perform poorly.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We developed a benchmark set to assess the generalization of state-of-the-art large language models on problems beyond linguistic tasks and evaluate it on a systematic progression of GPT models (GPT-3.5, GPT-4, GPT-4o, GPT-4o-mini). Using simple games like Tic-Tac-Toe, Connect Four, Battleship, and a Shape Recognition Game, all encoded in ASCII, we test strategic capabilities and spatial reasoning, core abilities any artificial intelligence would need to master for solving problems in chemistry. To probe generalization, we introduce two new games for spatial logic: LEGO Connect Language (LCL) and Guess-the-SMILES (GtS), a operationally simple chemistry benchmark. Our results show that GPT models provide meaningful responses for several tasks but, generally, perform poorly. A systematic performance progression with increased model capabilities (GPT-3.5, GPT-4, GPT-4o) is only observed for 4 out of the 7 benchmark tasks. All models consistently struggle with Battleship, LCL, and GtS. This suggests that while GPT models can emulate conversational proficiency and basic rule comprehension, they have limited generalization with respect to strategy and spatial reasoning. Particularly poor performance is observed for interpreting molecular graphs when encoded in ASCII. The results provided by our open-source benchmark suite (\href{https://github.com/BlueVelvetSackOfGoldPotatoes/child-play}{\texttt{ChildPlay} GitHub Repository}) caution against claims of emergent intelligence in GPT models, which appear more specialized than general.
Related papers
- The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles [29.214813685163218]
OpenAI's releases of o1 and o3 mark a paradigm shift in Large Language Models towards advanced reasoning capabilities.
We track the evolution of the GPT-[n] and o-[n] series models on challenging multimodal puzzles.
The superior performance of o1 comes at nearly 750 times the computational cost of GPT-4o, raising concerns about its efficiency.
arXiv Detail & Related papers (2025-02-03T05:47:04Z) - Evaluating GPT-4 at Grading Handwritten Solutions in Math Exams [48.99818550820575]
We leverage state-of-the-art multi-modal AI models, in particular GPT-4o, to automatically grade handwritten responses to college-level math exams.
Using real student responses to questions in a probability theory exam, we evaluate GPT-4o's alignment with ground-truth scores from human graders using various prompting techniques.
arXiv Detail & Related papers (2024-11-07T22:51:47Z) - GameTraversalBenchmark: Evaluating Planning Abilities Of Large Language Models Through Traversing 2D Game Maps [5.874552372073687]
Large language models (LLMs) have recently demonstrated great success in generating and understanding natural language.
We propose GameTraversalBenchmark (GTB), a benchmark consisting of diverse 2D grid-based game maps.
GPT-4-Turbo achieved the highest score of 44.97% on GTB_Score (GTBS), a composite score that combines the three above criteria.
arXiv Detail & Related papers (2024-10-10T09:54:28Z) - Evaluating Large Language Models with Grid-Based Game Competitions: An Extensible LLM Benchmark and Leaderboard [0.0]
We introduce a novel benchmark for large language models (LLMs) through grid-based games such as Tic-Tac-Toe, Connect Four, and Gomoku.
The open-source game simulation code available on GitHub allows LLMs to compete and generates detailed data files.
We present the results of games among leading LLMs, including Claude 3.5 Sonnet and Claude 3 Sonnet by Anthropic, Gemini 1.5 Pro and Gemini Flash by Google, GPT-4 Turbo and GPT-4o by OpenAI, and Llama3-70B by Meta.
arXiv Detail & Related papers (2024-07-10T16:14:34Z) - Are Large Language Models Strategic Decision Makers? A Study of Performance and Bias in Two-Player Non-Zero-Sum Games [56.70628673595041]
Large Language Models (LLMs) have been increasingly used in real-world settings, yet their strategic decision-making abilities remain largely unexplored.
This work investigates the performance and merits of LLMs in canonical game-theoretic two-player non-zero-sum games, Stag Hunt and Prisoner Dilemma.
Our structured evaluation of GPT-3.5, GPT-4-Turbo, GPT-4o, and Llama-3-8B shows that these models, when making decisions in these games, are affected by at least one of the following systematic biases.
arXiv Detail & Related papers (2024-07-05T12:30:02Z) - Adaptable Logical Control for Large Language Models [68.27725600175013]
Ctrl-G is an adaptable framework that facilitates tractable and flexible control of model generation at inference time.
We show that Ctrl-G, when applied to a TULU2-7B model, outperforms GPT3.5 and GPT4 on the task of interactive text editing.
arXiv Detail & Related papers (2024-06-19T23:47:59Z) - GameBench: Evaluating Strategic Reasoning Abilities of LLM Agents [4.209869303518743]
We introduce GameBench, a cross-domain benchmark for evaluating strategic reasoning abilities of large language models.
Our evaluations use GPT-3 and GPT-4 in their base form along with two scaffolding frameworks designed to enhance strategic reasoning ability: Chain-of-Thought (CoT) prompting and Reasoning Via Planning (RAP)
Our results show that none of the tested models match human performance, and at worst GPT-4 performs worse than random action.
arXiv Detail & Related papers (2024-06-07T00:28:43Z) - Will GPT-4 Run DOOM? [0.0]
We show that GPT-4's reasoning and planning capabilities extend to the 1993 first-person shooter Doom.
We find that GPT-4 can play the game to a passable degree: it is able to manipulate doors, combat enemies, and perform pathing.
arXiv Detail & Related papers (2024-03-08T17:30:41Z) - Can Large Language Models do Analytical Reasoning? [45.69642663863077]
This paper explores the cutting-edge Large Language Model with analytical reasoning on sports.
We find that GPT-4 stands out in effectiveness, followed by Claude-2.1, with GPT-3.5, Gemini-Pro, and Llama-2-70b lagging behind.
To our surprise, we observe that most models, including GPT-4, struggle to accurately count the total scores for NBA quarters despite showing strong performance in counting NFL quarter scores.
arXiv Detail & Related papers (2024-03-06T20:22:08Z) - Loose LIPS Sink Ships: Asking Questions in Battleship with Language-Informed Program Sampling [80.64715784334936]
We study tradeoffs in a classic grounded question-asking task based on the board game Battleship.
Our model uses large language models (LLMs) to generate natural language questions, translate them into symbolic programs, and evaluate their expected information gain.
We find that with a surprisingly modest resource budget, this simple Monte Carlo optimization strategy yields informative questions that mirror human performance.
arXiv Detail & Related papers (2024-02-29T18:58:15Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z) - An In-depth Look at Gemini's Language Abilities [49.897870833250494]
We compare the abilities of the OpenAI GPT and Google Gemini models.
We perform this analysis over 10 datasets testing a variety of language abilities.
We find that Gemini Pro achieves accuracy that is close but slightly inferior to the corresponding GPT 3.5 Turbo.
arXiv Detail & Related papers (2023-12-18T18:47:42Z) - Prompt Engineering or Fine-Tuning: An Empirical Assessment of LLMs for Code [7.760653867600283]
We evaluate GPT-4 using three prompt engineering strategies -- basic prompting, in-context learning, and task-specific prompting.
We compare it against 17 fine-tuned models across three code-related tasks: code summarization, generation, and translation.
arXiv Detail & Related papers (2023-10-11T00:21:00Z) - How FaR Are Large Language Models From Agents with Theory-of-Mind? [69.41586417697732]
We propose a new evaluation paradigm for large language models (LLMs): Thinking for Doing (T4D)
T4D requires models to connect inferences about others' mental states to actions in social scenarios.
We introduce a zero-shot prompting framework, Foresee and Reflect (FaR), which provides a reasoning structure that encourages LLMs to anticipate future challenges.
arXiv Detail & Related papers (2023-10-04T06:47:58Z) - Strategic Behavior of Large Language Models: Game Structure vs.
Contextual Framing [0.0]
This paper investigates the strategic decision-making capabilities of three Large Language Models (LLMs): GPT-3.5, GPT-4, and LLaMa-2.
Utilizing four canonical two-player games, we explore how these models navigate social dilemmas.
arXiv Detail & Related papers (2023-09-12T00:54:15Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z) - Gpt-4: A Review on Advancements and Opportunities in Natural Language
Processing [0.0]
Generative Pre-trained Transformer 4 (GPT-4) is the fourth-generation language model in the GPT series, developed by OpenAI.
GPT-4 has a larger model size (more than one trillion), better multilingual capabilities, improved contextual understanding, and reasoning capabilities than GPT-3.
Some of the potential applications of GPT-4 include chatbots, personal assistants, language translation, text summarization, and question-answering.
arXiv Detail & Related papers (2023-05-04T22:46:43Z) - Visual Instruction Tuning [79.70923292053097]
We present the first attempt to use language-only GPT-4 to generate multimodal language-image instruction-following data.
By instruction tuning on such generated data, we introduce LLaVA: Large Language and Vision Assistant.
When fine-tuned on Science QA, the synergy of LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%.
arXiv Detail & Related papers (2023-04-17T17:59:25Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - Sparks of Artificial General Intelligence: Early experiments with GPT-4 [66.1188263570629]
GPT-4, developed by OpenAI, was trained using an unprecedented scale of compute and data.
We demonstrate that GPT-4 can solve novel and difficult tasks that span mathematics, coding, vision, medicine, law, psychology and more.
We believe GPT-4 could reasonably be viewed as an early (yet still incomplete) version of an artificial general intelligence (AGI) system.
arXiv Detail & Related papers (2023-03-22T16:51:28Z) - Language Models are Few-Shot Learners [61.36677350504291]
We show that scaling up language models greatly improves task-agnostic, few-shot performance.
We train GPT-3, an autoregressive language model with 175 billion parameters, and test its performance in the few-shot setting.
GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks.
arXiv Detail & Related papers (2020-05-28T17:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.