Building Intelligence Identification System via Large Language Model Watermarking: A Survey and Beyond
- URL: http://arxiv.org/abs/2407.11100v3
- Date: Wed, 24 Jul 2024 08:10:29 GMT
- Title: Building Intelligence Identification System via Large Language Model Watermarking: A Survey and Beyond
- Authors: Xuhong Wang, Haoyu Jiang, Yi Yu, Jingru Yu, Yilun Lin, Ping Yi, Yingchun Wang, Yu Qiao, Li Li, Fei-Yue Wang,
- Abstract summary: Large Language Models (LLMs) are increasingly integrated into diverse industries, posing substantial security risks due to unauthorized replication and misuse.
We propose a mathematical framework based on mutual information theory, which systematizes the identification process to achieve more precise and customized watermarking.
- Score: 35.13949723065787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are increasingly integrated into diverse industries, posing substantial security risks due to unauthorized replication and misuse. To mitigate these concerns, robust identification mechanisms are widely acknowledged as an effective strategy. Identification systems for LLMs now rely heavily on watermarking technology to manage and protect intellectual property and ensure data security. However, previous studies have primarily concentrated on the basic principles of algorithms and lacked a comprehensive analysis of watermarking theory and practice from the perspective of intelligent identification. To bridge this gap, firstly, we explore how a robust identity recognition system can be effectively implemented and managed within LLMs by various participants using watermarking technology. Secondly, we propose a mathematical framework based on mutual information theory, which systematizes the identification process to achieve more precise and customized watermarking. Additionally, we present a comprehensive evaluation of performance metrics for LLM watermarking, reflecting participant preferences and advancing discussions on its identification applications. Lastly, we outline the existing challenges in current watermarking technologies and theoretical frameworks, and provide directional guidance to address these challenges. Our systematic classification and detailed exposition aim to enhance the comparison and evaluation of various methods, fostering further research and development toward a transparent, secure, and equitable LLM ecosystem.
Related papers
- Large Language Models for Network Intrusion Detection Systems: Foundations, Implementations, and Future Directions [7.478562842905953]
Large Language Models (LLMs) have revolutionized various fields with their exceptional capabilities in understanding, processing, and generating human-like text.<n>This paper investigates the potential of LLMs in advancing Network Intrusion Detection Systems (NIDS), analyzing current challenges, methodologies, and future opportunities.
arXiv Detail & Related papers (2025-07-07T08:28:07Z) - In-Context Watermarks for Large Language Models [71.29952527565749]
In-Context Watermarking (ICW) embeds watermarks into generated text solely through prompt engineering.<n>We investigate four ICW strategies at different levels of granularity, each paired with a tailored detection method.<n>Our experiments validate the feasibility of ICW as a model-agnostic, practical watermarking approach.
arXiv Detail & Related papers (2025-05-22T17:24:51Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.
With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.
We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
Methods for detecting AI-generated media have evolved rapidly.
General-purpose detectors based on MLLMs integrate authenticity verification, explainability, and localization capabilities.
Ethical and security considerations have emerged as critical global concerns.
arXiv Detail & Related papers (2025-02-07T12:18:20Z) - Watermarking Large Language Models and the Generated Content: Opportunities and Challenges [18.01886375229288]
generative large language models (LLMs) have raised concerns about intellectual property rights violations and the spread of machine-generated misinformation.
Watermarking serves as a promising approch to establish ownership, prevent unauthorized use, and trace the origins of LLM-generated content.
This paper summarizes and shares the challenges and opportunities we found when watermarking LLMs.
arXiv Detail & Related papers (2024-10-24T18:55:33Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
We propose WeKnow-RAG, which integrates Web search and Knowledge Graphs into a "Retrieval-Augmented Generation (RAG)" system.
First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval.
Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process.
arXiv Detail & Related papers (2024-08-14T15:19:16Z) - Automated Phishing Detection Using URLs and Webpages [35.66275851732625]
This project addresses the constraints of traditional reference-based phishing detection by developing an LLM agent framework.
This agent harnesses Large Language Models to actively fetch and utilize online information.
Our approach has achieved with accuracy of 0.945, significantly outperforms the existing solution(DynaPhish) by 0.445.
arXiv Detail & Related papers (2024-08-03T05:08:27Z) - MarkLLM: An Open-Source Toolkit for LLM Watermarking [80.00466284110269]
MarkLLM is an open-source toolkit for implementing LLM watermarking algorithms.
For evaluation, MarkLLM offers a comprehensive suite of 12 tools spanning three perspectives, along with two types of automated evaluation pipelines.
arXiv Detail & Related papers (2024-05-16T12:40:01Z) - Building Guardrails for Large Language Models [19.96292920696796]
Guardrails, which filter the inputs or outputs of LLMs, have emerged as a core safeguarding technology.
This position paper takes a deep look at current open-source solutions (Llama Guard, Nvidia NeMo, Guardrails AI) and discusses the challenges and the road towards building more complete solutions.
arXiv Detail & Related papers (2024-02-02T16:35:00Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
This study assesses the impact of watermarking on different capabilities of large language models (LLMs) from a cognitive science lens.
We introduce Watermarking with Mutual Exclusion (WatME) to seamlessly integrate watermarks.
arXiv Detail & Related papers (2023-11-16T11:58:31Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
The ability to detect LLMs-generated content has become of paramount importance.
We aim to provide a detailed overview of existing detection strategies and benchmarks.
We also posit the necessity for a multi-faceted approach to defend against various attacks.
arXiv Detail & Related papers (2023-10-24T09:10:26Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
We identify and characterize the emerging area of representation engineering (RepE)
RepE places population-level representations, rather than neurons or circuits, at the center of analysis.
We showcase how these methods can provide traction on a wide range of safety-relevant problems.
arXiv Detail & Related papers (2023-10-02T17:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.