WatME: Towards Lossless Watermarking Through Lexical Redundancy
- URL: http://arxiv.org/abs/2311.09832v3
- Date: Thu, 6 Jun 2024 13:17:43 GMT
- Title: WatME: Towards Lossless Watermarking Through Lexical Redundancy
- Authors: Liang Chen, Yatao Bian, Yang Deng, Deng Cai, Shuaiyi Li, Peilin Zhao, Kam-fai Wong,
- Abstract summary: This study assesses the impact of watermarking on different capabilities of large language models (LLMs) from a cognitive science lens.
We introduce Watermarking with Mutual Exclusion (WatME) to seamlessly integrate watermarks.
- Score: 58.61972059246715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text watermarking has emerged as a pivotal technique for identifying machine-generated text. However, existing methods often rely on arbitrary vocabulary partitioning during decoding to embed watermarks, which compromises the availability of suitable tokens and significantly degrades the quality of responses. This study assesses the impact of watermarking on different capabilities of large language models (LLMs) from a cognitive science lens. Our finding highlights a significant disparity; knowledge recall and logical reasoning are more adversely affected than language generation. These results suggest a more profound effect of watermarking on LLMs than previously understood. To address these challenges, we introduce Watermarking with Mutual Exclusion (WatME), a novel approach leveraging linguistic prior knowledge of inherent lexical redundancy in LLM vocabularies to seamlessly integrate watermarks. Specifically, WatME dynamically optimizes token usage during the decoding process by applying a mutually exclusive rule to the identified lexical redundancies. This strategy effectively prevents the unavailability of appropriate tokens and preserves the expressive power of LLMs. We provide both theoretical analysis and empirical evidence showing that WatME effectively preserves the diverse capabilities of LLMs while ensuring watermark detectability.
Related papers
- Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? [62.72729485995075]
We investigate the effectiveness of watermarking as a deterrent against the generation of copyrighted texts.
We find that watermarking adversely affects the success rate of Membership Inference Attacks (MIAs)
We propose an adaptive technique to improve the success rate of a recent MIA under watermarking.
arXiv Detail & Related papers (2024-07-24T16:53:09Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
We present a novel type of watermark, Sparse Watermark, which aims to mitigate this trade-off by applying watermarks to a small subset of generated tokens distributed across the text.
Our experimental results demonstrate that the proposed watermarking scheme achieves high detectability while generating text that outperforms previous watermarking methods in quality across various tasks.
arXiv Detail & Related papers (2024-07-17T18:52:12Z) - Topic-Based Watermarks for LLM-Generated Text [46.71493672772134]
This paper proposes a novel topic-based watermarking algorithm for large language models (LLMs)
By using topic-specific token biases, we embed a topic-sensitive watermarking into the generated text.
We demonstrate that our proposed watermarking scheme classifies various watermarked text topics with 99.99% confidence.
arXiv Detail & Related papers (2024-04-02T17:49:40Z) - Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models [31.062753031312006]
Large language models generate high-quality responses with potential misinformation.
Watermarking is pivotal in this context, which involves embedding hidden markers in texts.
We introduce a novel multi-objective optimization (MOO) approach for watermarking.
Our method simultaneously achieves detectability and semantic integrity.
arXiv Detail & Related papers (2024-02-28T05:43:22Z) - Turning Your Strength into Watermark: Watermarking Large Language Model via Knowledge Injection [66.26348985345776]
We propose a novel watermarking method for large language models (LLMs) based on knowledge injection.
In the watermark embedding stage, we first embed the watermarks into the selected knowledge to obtain the watermarked knowledge.
In the watermark extraction stage, questions related to the watermarked knowledge are designed, for querying the suspect LLM.
Experiments show that the watermark extraction success rate is close to 100% and demonstrate the effectiveness, fidelity, stealthiness, and robustness of our proposed method.
arXiv Detail & Related papers (2023-11-16T03:22:53Z) - A Robust Semantics-based Watermark for Large Language Model against Paraphrasing [50.84892876636013]
Large language models (LLMs) have show great ability in various natural language tasks.
There are concerns that LLMs are possible to be used improperly or even illegally.
We propose a semantics-based watermark framework SemaMark.
arXiv Detail & Related papers (2023-11-15T06:19:02Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.