Latent Linear Quadratic Regulator for Robotic Control Tasks
- URL: http://arxiv.org/abs/2407.11107v1
- Date: Mon, 15 Jul 2024 15:22:52 GMT
- Title: Latent Linear Quadratic Regulator for Robotic Control Tasks
- Authors: Yuan Zhang, Shaohui Yang, Toshiyuki Ohtsuka, Colin Jones, Joschka Boedecker,
- Abstract summary: This paper presents a $textbfla$tent $textbfl$inear $textbfq$uadratic $textbfr$egulator (LaLQR) that maps the state space into a latent space.
Experiments show LaLQR's superior efficiency and generalization compared to other baselines.
- Score: 10.09131366605447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model predictive control (MPC) has played a more crucial role in various robotic control tasks, but its high computational requirements are concerning, especially for nonlinear dynamical models. This paper presents a $\textbf{la}$tent $\textbf{l}$inear $\textbf{q}$uadratic $\textbf{r}$egulator (LaLQR) that maps the state space into a latent space, on which the dynamical model is linear and the cost function is quadratic, allowing the efficient application of LQR. We jointly learn this alternative system by imitating the original MPC. Experiments show LaLQR's superior efficiency and generalization compared to other baselines.
Related papers
- DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - HiRE: High Recall Approximate Top-$k$ Estimation for Efficient LLM
Inference [68.59839755875252]
HiRE comprises of two novel components: (i) a compression scheme to cheaply predict top-$k$ rows/columns with high recall, followed by full computation restricted to the predicted subset, and (ii) DA-TOP-$k$: an efficient multi-device approximate top-$k$ operator.
We demonstrate that on a one billion parameter model, HiRE applied to both the softmax as well as feedforward layers, achieves almost matching pretraining and downstream accuracy, and speeds up inference latency by $1.47times$ on a single TPUv5e device.
arXiv Detail & Related papers (2024-02-14T18:04:36Z) - Combining model-predictive control and predictive reinforcement learning
for stable quadrupedal robot locomotion [0.0]
We study how this can be achieved by a combination of model-predictive and predictive reinforcement learning controllers.
In this work, we combine both control methods to address the quadrupedal robot stable gate generation problem.
arXiv Detail & Related papers (2023-07-15T09:22:37Z) - Decentralized Multi-Robot Formation Control Using Reinforcement Learning [2.7716102039510564]
This paper presents a decentralized leader-follower multi-robot formation control based on a reinforcement learning (RL) algorithm applied to a swarm of small educational Sphero robots.
To enhance the system behavior, we trained two different DDQN models, one for reaching the formation and the other for maintaining it.
The presented approach has been tested in simulation and real experiments which show that the multi-robot system can achieve and maintain a stable formation without the need for complex mathematical models and nonlinear control laws.
arXiv Detail & Related papers (2023-06-26T08:02:55Z) - LQGNet: Hybrid Model-Based and Data-Driven Linear Quadratic Stochastic
Control [24.413595920205907]
quadratic control deals with finding an optimal control signal for a dynamical system in a setting with uncertainty.
LQGNet is a controller that leverages data to operate under partially known dynamics.
We show that LQGNet outperforms classic control by overcoming mismatched SS models.
arXiv Detail & Related papers (2022-10-23T17:59:51Z) - Certainty Equivalent Quadratic Control for Markov Jump Systems [24.744481548320305]
We investigate robustness aspects of certainty equivalent model-based optimal control for MJS with quadratic cost function.
We provide explicit perturbation bounds which decay as $mathcalO(epsilon + eta)$ and $mathcalO((epsilon + eta)2)$ respectively.
arXiv Detail & Related papers (2021-05-26T06:45:47Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
Low-complexity models such as linear function representation play a pivotal role in enabling sample-efficient reinforcement learning.
In this paper, we investigate a new sampling protocol, which draws samples in an online/exploratory fashion but allows one to backtrack and revisit previous states in a controlled and infrequent manner.
We develop an algorithm tailored to this setting, achieving a sample complexity that scales practicallyly with the feature dimension, the horizon, and the inverse sub-optimality gap, but not the size of the state/action space.
arXiv Detail & Related papers (2021-05-17T17:22:07Z) - Beyond Fully-Connected Layers with Quaternions: Parameterization of
Hypercomplex Multiplications with $1/n$ Parameters [71.09633069060342]
We propose parameterizing hypercomplex multiplications, allowing models to learn multiplication rules from data regardless of whether such rules are predefined.
Our method not only subsumes the Hamilton product, but also learns to operate on any arbitrary nD hypercomplex space.
arXiv Detail & Related papers (2021-02-17T06:16:58Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.