論文の概要: Towards Adversarially Robust Vision-Language Models: Insights from Design Choices and Prompt Formatting Techniques
- arxiv url: http://arxiv.org/abs/2407.11121v1
- Date: Mon, 15 Jul 2024 18:00:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 19:41:08.194555
- Title: Towards Adversarially Robust Vision-Language Models: Insights from Design Choices and Prompt Formatting Techniques
- Title(参考訳): 逆ロバスト視覚言語モデルに向けて:デザイン選択とプロンプトフォーマッティング技術から
- Authors: Rishika Bhagwatkar, Shravan Nayak, Reza Bayat, Alexis Roger, Daniel Z Kaplan, Pouya Bashivan, Irina Rish,
- Abstract要約: VLM(Vision-Language Models)は、研究と現実世界の両方の応用が急増しているのを目撃している。
本研究は,画像ベース攻撃に対するVLMの対角的ロバスト性に対するモデル設計選択の影響を系統的に検討する。
- 参考スコア(独自算出の注目度): 12.907116223796201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs) have witnessed a surge in both research and real-world applications. However, as they are becoming increasingly prevalent, ensuring their robustness against adversarial attacks is paramount. This work systematically investigates the impact of model design choices on the adversarial robustness of VLMs against image-based attacks. Additionally, we introduce novel, cost-effective approaches to enhance robustness through prompt formatting. By rephrasing questions and suggesting potential adversarial perturbations, we demonstrate substantial improvements in model robustness against strong image-based attacks such as Auto-PGD. Our findings provide important guidelines for developing more robust VLMs, particularly for deployment in safety-critical environments.
- Abstract(参考訳): VLM(Vision-Language Models)は、研究と現実世界の両方の応用が急増しているのを目撃している。
しかし、ますます普及するにつれて、敵の攻撃に対する頑強さが最重要視されている。
本研究は,画像ベース攻撃に対するVLMの対角的ロバスト性に対するモデル設計選択の影響を系統的に検討する。
さらに,プロンプトフォーマッティングによるロバスト性向上のための,新規で費用対効果の高いアプローチを提案する。
質問をリフレッシュし、潜在的な敵対的摂動を示唆することにより、Auto-PGDのような強力な画像ベース攻撃に対するモデルロバスト性を大幅に改善することを示す。
本研究は,より堅牢なVLMの開発,特に安全クリティカル環境への展開のための重要なガイドラインを提供する。
関連論文リスト
- Chain of Attack: On the Robustness of Vision-Language Models Against Transfer-Based Adversarial Attacks [34.40254709148148]
事前学習された視覚言語モデル(VLM)は、画像および自然言語理解において顕著な性能を示した。
彼らの潜在的な安全性と堅牢性の問題は、敵がシステムを回避し、悪意のある攻撃を通じて有害なコンテンツを生成することを懸念する。
本稿では,マルチモーダルなセマンティック・アップデートに基づいて,敵対的事例の生成を反復的に促進するアタック・チェーン(CoA)を提案する。
論文 参考訳(メタデータ) (2024-11-24T05:28:07Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Towards Transferable Attacks Against Vision-LLMs in Autonomous Driving with Typography [21.632703081999036]
Vision-Large-Language-Models (Vision-LLMs)は、自律走行(AD)システムに統合されつつある。
我々は,ビジョンLLMの意思決定能力に頼って,ADシステムに対するタイポグラフィー攻撃を活用することを提案する。
論文 参考訳(メタデータ) (2024-05-23T04:52:02Z) - Safeguarding Vision-Language Models Against Patched Visual Prompt Injectors [31.383591942592467]
視覚言語モデル(VLM)は、視覚とテキストのデータを組み合わせて理解と相互作用を強化する革新的な方法を提供する。
パッチベースの敵攻撃は、物理的な視覚応用において最も現実的な脅威モデルと考えられている。
本研究では,スムージング技術に根ざした防御機構であるSmoothVLMを導入し,VLMをパッチ付き視覚プロンプトインジェクタの脅威から保護する。
論文 参考訳(メタデータ) (2024-05-17T04:19:19Z) - Adversarial Attacks and Defense for Conversation Entailment Task [0.49157446832511503]
大規模言語モデルは、低コストの敵攻撃に対して脆弱である。
我々は、仮説の真偽を正確に識別するために、変圧器モデルを微調整する。
モデルのロバスト性を高めるために,埋め込み摂動損失法を導入する。
論文 参考訳(メタデータ) (2024-05-01T02:49:18Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - Adversarial Prompt Tuning for Vision-Language Models [86.5543597406173]
AdvPT(Adversarial Prompt Tuning)は、視覚言語モデル(VLM)における画像エンコーダの対向ロバスト性を高める技術である。
我々は,AdvPTが白箱攻撃や黒箱攻撃に対する抵抗性を向上し,既存の画像処理による防御技術と組み合わせることで相乗効果を示すことを示した。
論文 参考訳(メタデータ) (2023-11-19T07:47:43Z) - JAB: Joint Adversarial Prompting and Belief Augmentation [81.39548637776365]
我々は,ブラックボックスターゲットモデルの強靭性を,敵対的プロンプトと信念の増大を通じて探索し,改善する共同枠組みを導入する。
このフレームワークは、自動的なレッド・チームリング手法を用いてターゲットモデルを探索し、信念強化器を用いて目標モデルの命令を生成し、敵のプローブに対するロバスト性を向上させる。
論文 参考訳(メタデータ) (2023-11-16T00:35:54Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
大規模視覚言語モデル(VLM)のロバスト性を,最も現実的で高リスクな環境で評価する。
特に,CLIP や BLIP などの事前学習モデルに対して,まず攻撃対象のサンプルを作成する。
これらのVLM上のブラックボックスクエリは、ターゲットの回避の効果をさらに向上させることができる。
論文 参考訳(メタデータ) (2023-05-26T13:49:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。