論文の概要: TLRN: Temporal Latent Residual Networks For Large Deformation Image Registration
- arxiv url: http://arxiv.org/abs/2407.11219v2
- Date: Wed, 24 Jul 2024 02:45:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 18:12:28.369884
- Title: TLRN: Temporal Latent Residual Networks For Large Deformation Image Registration
- Title(参考訳): TLRN: 大規模な変形画像登録のための時間遅延残差ネットワーク
- Authors: Nian Wu, Jiarui Xing, Miaomiao Zhang,
- Abstract要約: 本稿では,時系列画像登録における変形フィールドの列を予測するため,TLRN(en Temporal Latent Residual Network)と呼ばれる新しい手法を提案する。
提案手法は, 時間的初期速度場によってパラメータ化される遅延変形空間において, 残留ブロックを慎重に設計した時間的残差ネットワークである。
- 参考スコア(独自算出の注目度): 4.272666443603612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach, termed {\em Temporal Latent Residual Network (TLRN)}, to predict a sequence of deformation fields in time-series image registration. The challenge of registering time-series images often lies in the occurrence of large motions, especially when images differ significantly from a reference (e.g., the start of a cardiac cycle compared to the peak stretching phase). To achieve accurate and robust registration results, we leverage the nature of motion continuity and exploit the temporal smoothness in consecutive image frames. Our proposed TLRN highlights a temporal residual network with residual blocks carefully designed in latent deformation spaces, which are parameterized by time-sequential initial velocity fields. We treat a sequence of residual blocks over time as a dynamic training system, where each block is designed to learn the residual function between desired deformation features and current input accumulated from previous time frames. We validate the effectivenss of TLRN on both synthetic data and real-world cine cardiac magnetic resonance (CMR) image videos. Our experimental results shows that TLRN is able to achieve substantially improved registration accuracy compared to the state-of-the-art. Our code is publicly available at https://github.com/nellie689/TLRN.
- Abstract(参考訳): 本稿では,時系列画像登録における変形フィールドの列を予測するため,TLRN ( {\em Temporal Latent Residual Network) と呼ばれる新しい手法を提案する。
時系列画像の登録の課題は、特に画像が基準と大きく異なる場合(例えば、ピークストレッチフェーズと比較して心臓周期の開始)に、大きな動きが発生することである。
高精度でロバストな登録結果を得るためには、動きの連続性の性質を活用し、連続した画像フレームの時間的滑らかさを利用する。
提案するTLRNは、時間列初期速度場によってパラメータ化される遅延変形空間において、残留ブロックを慎重に設計した時間的残留ネットワークを強調する。
各ブロックは、所望の変形特徴と過去の時間フレームから蓄積した電流入力との間の残差関数を学習するように設計されている。
合成データと実世界の心臓磁気共鳴(CMR)画像からTLRNの有効性を検証した。
実験の結果,TLRNは最先端技術と比較して,登録精度を大幅に向上できることがわかった。
私たちのコードはhttps://github.com/nellie689/TLRNで公開されています。
関連論文リスト
- ABN: Anti-Blur Neural Networks for Multi-Stage Deformable Image
Registration [20.054872823030454]
変形可能な画像登録は、ニューロイメージングのための重要な前処理ステップとして機能する。
マルチステージ画像登録のための新しい解として,アンチブルネットワーク (ABN) を提案する。
論文 参考訳(メタデータ) (2022-12-06T19:21:43Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
多くの深層学習に基づく登録法は、変形場は画像領域の至る所で滑らかで連続的であると仮定する。
本研究では,この課題に対処するために,不連続かつ局所的に滑らかな変形場を確保するための新しい不連続保存画像登録手法を提案する。
入力画像の構造的相関を学習するために,ネットワークのセグメンテーション成分にコアテンションブロックを提案する。
大規模心磁気共鳴画像系列を用いた物体内時間画像登録の課題について検討した。
論文 参考訳(メタデータ) (2022-11-24T23:45:01Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Recurrence-in-Recurrence Networks for Video Deblurring [58.49075799159015]
最先端のビデオデブロアリング法は、しばしばフレーム間の時間的依存性をモデル化するために、リカレントニューラルネットワークを採用する。
本稿では,短距離メモリの限界に対処する再帰型ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-03-12T11:58:13Z) - Closed-loop Feedback Registration for Consecutive Images of Moving
Flexible Targets [4.61174541905193]
そこで本研究では,変形可能な印刷パターンの整合と縫合を行うクローズドループフィードバック登録アルゴリズムを提案する。
以上の結果から,本アルゴリズムは,他の最先端アルゴリズムと比較して,ルート平均二乗誤差(RMSE)が低い点対を求めることができることがわかった。
論文 参考訳(メタデータ) (2021-10-20T20:31:43Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
ほとんどの深層学習に基づく登録法は、所望の変形場が全世界的に滑らかで連続的であると仮定する。
本稿では、より優れた登録性能とリアルな変形場を得るために、弱い教師付き深部不連続保存画像登録ネットワーク(DDIR)を提案する。
本研究では, 心臓磁気共鳴(MR)画像の登録実験において, 登録精度を大幅に向上し, より現実的な変形を予測できることを実証した。
論文 参考訳(メタデータ) (2021-07-09T13:35:59Z) - Deep Convolutional Neural Network for Non-rigid Image Registration [0.0]
本稿では、深層ニューラルネットワーク(dnn)と、より具体的には、深層畳み込みニューラルネットワーク(cnn)の非剛性画像登録を効率的に行う能力について検討する。
実験の結果、CNNは非剛体画像の効率的な登録に利用でき、従来のDiffomorphic Demons や Pyramiding に比べて計算時間もかなり少ないことがわかった。
論文 参考訳(メタデータ) (2021-04-24T23:24:29Z) - Test-Time Training for Deformable Multi-Scale Image Registration [15.523457398508263]
VoxelMorphのようなディープラーニングベースの登録アプローチが出現し、競争パフォーマンスを達成しています。
従来の学習型登録モデルの一般化能力を向上させるために, デフォーマブル画像登録のためのテストタイムトレーニングを構築した。
論文 参考訳(メタデータ) (2021-03-25T03:22:59Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
複数の解像度で抽出できる新しい時間・時間的畳み込みブロックを提案する。
提案するブロックは軽量で,任意の3D-CNNアーキテクチャに統合可能である。
論文 参考訳(メタデータ) (2020-11-08T10:40:26Z) - Deep Group-wise Variational Diffeomorphic Image Registration [3.0022455491411653]
本稿では,複数の画像の同時登録を可能にするために,現在の学習ベース画像登録を拡張することを提案する。
本稿では,複数の画像の粘性測地線平均への登録と,利用可能な画像のいずれかを固定画像として使用可能な登録を両立できる汎用的な数学的枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-01T07:37:28Z) - A Prospective Study on Sequence-Driven Temporal Sampling and Ego-Motion
Compensation for Action Recognition in the EPIC-Kitchens Dataset [68.8204255655161]
行動認識はコンピュータビジョンにおける最上位の研究分野の一つである。
エゴモーション記録シーケンスは重要な関連性を持つようになった。
提案手法は,このエゴモーションやカメラの動きを推定して対処することを目的としている。
論文 参考訳(メタデータ) (2020-08-26T14:44:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。