Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness
- URL: http://arxiv.org/abs/2407.11229v2
- Date: Fri, 4 Oct 2024 16:52:57 GMT
- Title: Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness
- Authors: Srija Mukhopadhyay, Adnan Qidwai, Aparna Garimella, Pritika Ramu, Vivek Gupta, Dan Roth,
- Abstract summary: Chart question answering (CQA) is a crucial area of Visual Language Understanding.
Current Visual Language Models (VLMs) in this field remain under-explored.
This paper evaluates state-of-the-art VLMs on comprehensive datasets.
- Score: 47.68358935792437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.
Related papers
- CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs [62.84082370758761]
CharXiv is a comprehensive evaluation suite involving 2,323 charts from arXiv papers.
To ensure quality, all charts and questions are handpicked, curated, and verified by human experts.
Results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model.
arXiv Detail & Related papers (2024-06-26T17:50:11Z) - Enhancing Question Answering on Charts Through Effective Pre-training Tasks [26.571522748519584]
We address the limitation of current VisualQA models when applied to charts and plots.
Our findings indicate that existing models particularly underperform in answering questions related to the chart's structural and visual context.
We propose three simple pre-training tasks that enforce the existing model in terms of both structural-visual knowledge, as well as its understanding of numerical questions.
arXiv Detail & Related papers (2024-06-14T14:40:10Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.
Large foundation models, such as large language models, have revolutionized various natural language processing tasks.
This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - UNK-VQA: A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models [55.22048505787125]
This paper contributes a comprehensive dataset, called UNK-VQA.
We first augment the existing data via deliberate perturbations on either the image or question.
We then extensively evaluate the zero- and few-shot performance of several emerging multi-modal large models.
arXiv Detail & Related papers (2023-10-17T02:38:09Z) - Generative Visual Question Answering [0.0]
This paper discusses a viable approach to creating an advanced Visual Question Answering (VQA) model which can produce successful results on temporal generalization.
We propose a new data set, GenVQA, utilizing images and captions from the VQAv2 and MS-COCO dataset to generate new images through stable diffusion.
Performance evaluation focuses on questions mirroring the original VQAv2 dataset, with the answers having been adjusted to the new images.
arXiv Detail & Related papers (2023-07-18T05:30:23Z) - Towards Complex Document Understanding By Discrete Reasoning [77.91722463958743]
Document Visual Question Answering (VQA) aims to understand visually-rich documents to answer questions in natural language.
We introduce a new Document VQA dataset, named TAT-DQA, which consists of 3,067 document pages and 16,558 question-answer pairs.
We develop a novel model named MHST that takes into account the information in multi-modalities, including text, layout and visual image, to intelligently address different types of questions.
arXiv Detail & Related papers (2022-07-25T01:43:19Z) - MGA-VQA: Multi-Granularity Alignment for Visual Question Answering [75.55108621064726]
Learning to answer visual questions is a challenging task since the multi-modal inputs are within two feature spaces.
We propose Multi-Granularity Alignment architecture for Visual Question Answering task (MGA-VQA)
Our model splits alignment into different levels to achieve learning better correlations without needing additional data and annotations.
arXiv Detail & Related papers (2022-01-25T22:30:54Z) - Classification-Regression for Chart Comprehension [16.311371103939205]
Chart question answering (CQA) is a task used for assessing chart comprehension.
We propose a new model that jointly learns classification and regression.
Our model's edge is particularly emphasized on questions with out-of-vocabulary answers.
arXiv Detail & Related papers (2021-11-29T18:46:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.