Quantum chemistry, classical heuristics, and quantum advantage
- URL: http://arxiv.org/abs/2407.11235v1
- Date: Mon, 15 Jul 2024 20:58:32 GMT
- Title: Quantum chemistry, classical heuristics, and quantum advantage
- Authors: Garnet Kin-Lic Chan,
- Abstract summary: We describe the problems of quantum chemistry, the intuition behind classical methods used to solve them, and the subsequent opportunities for quantum advantage.
This article is written for both quantum chemists and quantum information theorists.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe the problems of quantum chemistry, the intuition behind classical heuristic methods used to solve them, a conjectured form of the classical complexity of quantum chemistry problems, and the subsequent opportunities for quantum advantage. This article is written for both quantum chemists and quantum information theorists. In particular, we attempt to summarize the domain of quantum chemistry problems as well as the chemical intuition that is applied to solve them within concrete statements (such as a classical heuristic cost conjecture and a classification of different avenues for quantum advantage) in the hope that this may stimulate future analysis.
Related papers
- Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Foundations of Quantum Information for Physical Chemistry [0.0]
We review some basic, but sometimes misunderstood, concepts of quantum information based on the mathematical formulation of quantum mechanics.
We cover topics including qubits and their density matrix formalism, quantum measurement as a quantum operation, information theory, and entanglement.
We aim to clarify the rigorous definition of these concepts, and then indicate some examples in physical chemistry.
arXiv Detail & Related papers (2023-11-20T23:29:04Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Quantum stochastic processes and quantum non-Markovian phenomena [0.0]
This tutorial details the structure of quantum processes, in terms of the modern language of quantum combs.
We begin with the basics of classical processes and generalize the same ideas to the quantum domain.
We close the tutorial by laying out many exciting problems that lie ahead in this branch of science.
arXiv Detail & Related papers (2020-12-03T13:16:25Z) - Post-Hartree-Fock method in Quantum Chemistry for Quantum Computer [0.0]
Quantum computational chemistry is a potential application of quantum computers.
Quantum algorithms, quantum phase estimation, and variational quantum eigensolver have been applied to the post-Hartree-Fock method.
arXiv Detail & Related papers (2020-11-03T07:46:13Z) - Classical limit of quantum mechanics for damped driven oscillatory
systems: Quantum-classical correspondence [0.0]
We develop a quantum formalism on the basis of a linear-invariant theorem.
We illustrate the correspondence of the quantum energy with the classical one in detail.
arXiv Detail & Related papers (2020-10-18T12:12:01Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.