FR-SLAM: A SLAM Improvement Method Based on Floor Plan Registration
- URL: http://arxiv.org/abs/2407.11299v1
- Date: Tue, 16 Jul 2024 01:23:38 GMT
- Title: FR-SLAM: A SLAM Improvement Method Based on Floor Plan Registration
- Authors: Jiantao Feng, Xinde Li, HyunCheol Park, Juan Liu, Zhentong Zhang,
- Abstract summary: This paper proposes an improved SLAM method, based on floor plan registration, utilizing a morphology-based floor plan registration algorithm.
It facilitates the rapid acquisition of comprehensive motion maps and efficient path planning, enabling swift navigation to target positions within a shorter timeframe.
Tests conducted on real and simulated datasets demonstrate that, compared to other benchmark algorithms, this method achieves higher floor plan registration accuracy and shorter time consumption.
- Score: 4.9805321746841225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simultaneous Localization and Mapping (SLAM) technology enables the construction of environmental maps and localization, serving as a key technique for indoor autonomous navigation of mobile robots. Traditional SLAM methods typically require exhaustive traversal of all rooms during indoor navigation to obtain a complete map, resulting in lengthy path planning times and prolonged time to reach target points. Moreover, cumulative errors during motion lead to inaccurate robot localization, impacting navigation efficiency.This paper proposes an improved SLAM method, FR-SLAM, based on floor plan registration, utilizing a morphology-based floor plan registration algorithm to align and transform original floor plans. This approach facilitates the rapid acquisition of comprehensive motion maps and efficient path planning, enabling swift navigation to target positions within a shorter timeframe. To enhance registration and robot motion localization accuracy, a real-time update strategy is employed, comparing the current position's building structure with the map and dynamically updating floor plan registration results for precise localization. Comparative tests conducted on real and simulated datasets demonstrate that, compared to other benchmark algorithms, this method achieves higher floor plan registration accuracy and shorter time consumption to reach target positions.
Related papers
- PRISM-Loc: a Lightweight Long-range LiDAR Localization in Urban Environments with Topological Maps [0.8009940044669193]
We propose PRISM-Loc -- a topological map-based approach for localization in large environments.<n>The proposed approach leverages a twofold localization pipeline, which consists of global place recognition and estimation of the local pose inside the found location.<n>We evaluate the proposed method on the ITLP-Campus dataset on a 3 km route, and compare it against the state-of-the-art metric map-based and place recognition-based competitors.
arXiv Detail & Related papers (2025-06-18T19:59:50Z) - Floorplan-SLAM: A Real-Time, High-Accuracy, and Long-Term Multi-Session Point-Plane SLAM for Efficient Floorplan Reconstruction [6.135904277838598]
Floorplan reconstruction provides structural priors essential for reliable indoor robot navigation and high-level scene understanding.
We propose Floorplan-SLAM, which incorporates floorplan reconstruction tightly into a multi-session SLAM system by seamlessly interacting with plane extraction, pose estimation, and back-end optimization.
We show that Floorplan-SLAM significantly outperforms state-of-the-art methods in terms of plane extraction, pose estimation accuracy, and floorplan reconstruction fidelity and speed.
arXiv Detail & Related papers (2025-03-01T08:18:11Z) - A Real-time Spatio-Temporal Trajectory Planner for Autonomous Vehicles with Semantic Graph Optimization [8.221371036055167]
We propose a semantic-temporal trajectory planning method based on graph optimization.
It can effectively handle complex urban public road scenarios and perform in real time.
We will release our codes to accommodate benchmarking for the research community.
arXiv Detail & Related papers (2025-02-25T12:27:06Z) - ROLO-SLAM: Rotation-Optimized LiDAR-Only SLAM in Uneven Terrain with Ground Vehicle [49.61982102900982]
A LiDAR-based SLAM method is presented to improve the accuracy of pose estimations for ground vehicles in rough terrains.
A global-scale factor graph is established to aid in the reduction of cumulative errors.
The results demonstrate that ROLO-SLAM excels in pose estimation of ground vehicles and outperforms existing state-of-the-art LiDAR SLAM frameworks.
arXiv Detail & Related papers (2025-01-04T02:44:27Z) - Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation [64.84996994779443]
We propose a novel Affordances-Oriented Planner for continuous vision-language navigation (VLN) task.
Our AO-Planner integrates various foundation models to achieve affordances-oriented low-level motion planning and high-level decision-making.
Experiments on the challenging R2R-CE and RxR-CE datasets show that AO-Planner achieves state-of-the-art zero-shot performance.
arXiv Detail & Related papers (2024-07-08T12:52:46Z) - FRAME: A Modular Framework for Autonomous Map Merging: Advancements in the Field [12.247977717070773]
This article presents a novel approach for merging 3D point cloud maps in the context of egocentric multi-robot exploration.
The proposed approach leverages state-of-the-art place recognition and learned descriptors to efficiently detect overlap between maps.
The effectiveness of the proposed framework is successfully demonstrated through multiple field missions of robot exploration.
arXiv Detail & Related papers (2024-04-27T20:54:15Z) - FIT-SLAM -- Fisher Information and Traversability estimation-based
Active SLAM for exploration in 3D environments [1.4474137122906163]
Active visual SLAM finds a wide array of applications in-Denied sub-terrain environments and outdoor environments for ground robots.
It is imperative to incorporate the perception considerations in the goal selection and path planning towards the goal during an exploration mission.
We propose FIT-SLAM, a new exploration method tailored for unmanned ground vehicles (UGVs) to explore 3D environments.
arXiv Detail & Related papers (2024-01-17T16:46:38Z) - A Fast and Map-Free Model for Trajectory Prediction in Traffics [2.435517936694533]
This paper proposes an efficient trajectory prediction model that is not dependent on traffic maps.
By comprehensively utilizing attention mechanism, LSTM, graph convolution network and temporal transformer, our model is able to learn rich dynamic and interaction information of all agents.
Our model achieves the highest performance when comparing with existing map-free methods and also exceeds most map-based state-of-the-art methods on the Argoverse dataset.
arXiv Detail & Related papers (2023-07-19T08:36:31Z) - Leveraging Scene Embeddings for Gradient-Based Motion Planning in Latent
Space [24.95320093765214]
AMP-LS is able to plan in novel, complex scenes while outperforming traditional planning baselines in terms of speed by an order of magnitude.
We show that the resulting system is fast enough to enable closed-loop planning in real-world dynamic scenes.
arXiv Detail & Related papers (2023-03-06T18:49:39Z) - Differentiable Spatial Planning using Transformers [87.90709874369192]
We propose Spatial Planning Transformers (SPT), which given an obstacle map learns to generate actions by planning over long-range spatial dependencies.
In the setting where the ground truth map is not known to the agent, we leverage pre-trained SPTs in an end-to-end framework.
SPTs outperform prior state-of-the-art differentiable planners across all the setups for both manipulation and navigation tasks.
arXiv Detail & Related papers (2021-12-02T06:48:16Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
We propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments.
We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models.
A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability.
arXiv Detail & Related papers (2021-09-14T07:24:53Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaM outperforms existing path planning methods in 2D navigation tasks, especially in the presence of difficult-to-escape local optima.
These gains transfer to highly multimodal real-world tasks, where we outperform strong baselines in compiler phase ordering by up to 245% and in molecular design by up to 0.4 on properties on a 0-1 scale.
arXiv Detail & Related papers (2021-06-19T18:06:11Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations.
A population density map, obtained on-the-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building.
arXiv Detail & Related papers (2020-04-25T22:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.