論文の概要: Digital Twin Vehicular Edge Computing Network: Task Offloading and Resource Allocation
- arxiv url: http://arxiv.org/abs/2407.11310v1
- Date: Tue, 16 Jul 2024 01:51:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 18:52:01.244960
- Title: Digital Twin Vehicular Edge Computing Network: Task Offloading and Resource Allocation
- Title(参考訳): Digital Twin Vehicular Edge Computing Network: Task Offloading と Resource Allocation
- Authors: Yu Xie, Qiong Wu, Pingyi Fan,
- Abstract要約: 本稿では,タスクオフロードとリソース割り当てに関するマルチエージェント強化学習手法を提案する。
多数の実験により,本手法は他のベンチマークアルゴリズムと比較して有効であることが示された。
- 参考スコア(独自算出の注目度): 14.436364625881183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing demand for multiple applications on internet of vehicles. It requires vehicles to carry out multiple computing tasks in real time. However, due to the insufficient computing capability of vehicles themselves, offloading tasks to vehicular edge computing (VEC) servers and allocating computing resources to tasks becomes a challenge. In this paper, a multi task digital twin (DT) VEC network is established. By using DT to develop offloading strategies and resource allocation strategies for multiple tasks of each vehicle in a single slot, an optimization problem is constructed. To solve it, we propose a multi-agent reinforcement learning method on the task offloading and resource allocation. Numerous experiments demonstrate that our method is effective compared to other benchmark algorithms.
- Abstract(参考訳): 車両のインターネット上の複数のアプリケーションに対する需要が高まっている。
車両は複数の計算タスクをリアルタイムで実行する必要がある。
しかし、車両自体の計算能力が不足しているため、車両エッジコンピューティング(VEC)サーバにタスクをオフロードし、コンピュータリソースをタスクに割り当てることは困難である。
本稿では,マルチタスクディジタルツイン(DT)VECネットワークを構築した。
DTを用いて、各車両の複数のタスクに対するオフロード戦略とリソース割り当て戦略を1つのスロットで開発することにより、最適化問題を構築する。
そこで本研究では,タスクオフロードとリソース割り当てに関するマルチエージェント強化学習手法を提案する。
多数の実験により,本手法は他のベンチマークアルゴリズムと比較して有効であることが示された。
関連論文リスト
- Resource Allocation for Twin Maintenance and Computing Task Processing in Digital Twin Vehicular Edge Computing Network [48.15151800771779]
車両エッジコンピューティング(VEC)は、車両の近くにVECサーバを配置することで、計算キャッシュサービスを提供する。
しかしながら、VECネットワークは、ハイカーモビリティのような課題に直面している。
本研究では,ネットワーク内のツイン処理による2種類の遅延について検討した。
論文 参考訳(メタデータ) (2024-07-10T12:08:39Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Knowledge-Driven Multi-Agent Reinforcement Learning for Computation
Offloading in Cybertwin-Enabled Internet of Vehicles [24.29177900273616]
我々は,サイバトウィン対応IoVにおけるタスクオフロードの遅延を低減するために,知識駆動型マルチエージェント強化学習(KMARL)手法を提案する。
具体的には、検討されたシナリオにおいて、サイバートウィンは、各車両が情報を交換し、仮想空間におけるオフロード決定を行うための通信エージェントとして機能する。
論文 参考訳(メタデータ) (2023-08-04T09:11:37Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
本稿では,タスク固有のプロンプトを通じて視覚的見本を提示する,効果的なマルチタスクフレームワークVE-Promptを提案する。
具体的には、境界ボックスと色に基づくマーカーに基づいて視覚的な例を生成し、ターゲットカテゴリの正確な視覚的外観を提供する。
我々は変圧器をベースとしたエンコーダと畳み込み層を橋渡しし、自律運転における効率的かつ正確な統合認識を実現する。
論文 参考訳(メタデータ) (2023-03-03T08:54:06Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z) - Active Multi-Task Representation Learning [50.13453053304159]
本研究は,アクティブラーニングの手法を活用することで,資源タスクのサンプリングに関する最初の公式な研究を行う。
提案手法は, 対象タスクに対する各ソースタスクの関連性を反復的に推定し, その関連性に基づいて各ソースタスクからサンプルを抽出するアルゴリズムである。
論文 参考訳(メタデータ) (2022-02-02T08:23:24Z) - Learning Based Task Offloading in Digital Twin Empowered Internet of
Vehicles [22.088412340577896]
インターネット・オブ・ビークルのためのタスク・オフロード・フレームワークとしてDigital Twin (DT)を提案する。
クラウドに居住するソフトウェアエージェントとして、DT間の通信を用いて、DTは両方のグローバルネットワーク情報を得ることができる。
本稿では,アルゴリズムが最適オフロード戦略を効果的に発見できることを示すとともに,高速収束と高性能化を実現可能であることを示す。
論文 参考訳(メタデータ) (2021-12-28T08:24:56Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
無線ネットワークにおいて,共同作業,スペクトル,送信電力配分問題について検討する。
提案アルゴリズムは、標準Q-ラーニングアルゴリズムと比較して、収束に必要なイテレーション数と全ユーザの最大遅延を最大18%、11.1%削減することができる。
論文 参考訳(メタデータ) (2020-07-20T13:46:42Z) - Dynamic Task Weighting Methods for Multi-task Networks in Autonomous
Driving Systems [10.625400639764734]
ディープマルチタスクネットワークは、自動運転システムに特に関心がある。
進化的メタラーニングとタスクベースの選択的バックプロパゲーションを組み合わせた新しい手法を提案する。
提案手法は,2タスクアプリケーションにおいて,最先端の手法よりも有意差がある。
論文 参考訳(メタデータ) (2020-01-07T18:54:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。