VISA: Reasoning Video Object Segmentation via Large Language Models
- URL: http://arxiv.org/abs/2407.11325v1
- Date: Tue, 16 Jul 2024 02:29:29 GMT
- Title: VISA: Reasoning Video Object Segmentation via Large Language Models
- Authors: Cilin Yan, Haochen Wang, Shilin Yan, Xiaolong Jiang, Yao Hu, Guoliang Kang, Weidi Xie, Efstratios Gavves,
- Abstract summary: We introduce a new task, Reasoning Video Object (ReasonVOS)
This task aims to generate a sequence of segmentation masks in response to implicit text queries that require complex reasoning abilities.
We introduce VISA (Video-based large language Instructed Assistant) to tackle ReasonVOS.
- Score: 64.33167989521357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing Video Object Segmentation (VOS) relies on explicit user instructions, such as categories, masks, or short phrases, restricting their ability to perform complex video segmentation requiring reasoning with world knowledge. In this paper, we introduce a new task, Reasoning Video Object Segmentation (ReasonVOS). This task aims to generate a sequence of segmentation masks in response to implicit text queries that require complex reasoning abilities based on world knowledge and video contexts, which is crucial for structured environment understanding and object-centric interactions, pivotal in the development of embodied AI. To tackle ReasonVOS, we introduce VISA (Video-based large language Instructed Segmentation Assistant), to leverage the world knowledge reasoning capabilities of multi-modal LLMs while possessing the ability to segment and track objects in videos with a mask decoder. Moreover, we establish a comprehensive benchmark consisting of 35,074 instruction-mask sequence pairs from 1,042 diverse videos, which incorporates complex world knowledge reasoning into segmentation tasks for instruction-tuning and evaluation purposes of ReasonVOS models. Experiments conducted on 8 datasets demonstrate the effectiveness of VISA in tackling complex reasoning segmentation and vanilla referring segmentation in both video and image domains. The code and dataset are available at https://github.com/cilinyan/VISA.
Related papers
- One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos [41.34787907803329]
VideoLISA is a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos.
VideoLISA generates temporally consistent segmentation masks in videos based on language instructions.
arXiv Detail & Related papers (2024-09-29T07:47:15Z) - ViLLa: Video Reasoning Segmentation with Large Language Model [48.75470418596875]
We propose a new video segmentation task - video reasoning segmentation.
The task is designed to output tracklets of segmentation masks given a complex input text query.
We present ViLLa: Video reasoning segmentation with a Large Language Model.
arXiv Detail & Related papers (2024-07-18T17:59:17Z) - Momentor: Advancing Video Large Language Model with Fine-Grained Temporal Reasoning [102.54669633984278]
We propose Momentor, a Video-LLM capable of accomplishing fine-grained temporal understanding tasks.
We train Momentor on Moment-10M, enabling it to perform segment-level reasoning and localization.
arXiv Detail & Related papers (2024-02-18T03:04:38Z) - LISA: Reasoning Segmentation via Large Language Model [68.24075852136761]
We propose a new segmentation task -- reasoning segmentation.
The task is designed to output a segmentation mask given a complex and implicit query text.
We present LISA: large Language Instructed Assistant, which inherits the language generation capabilities of multimodal Large Language Models.
arXiv Detail & Related papers (2023-08-01T17:50:17Z) - The Second Place Solution for The 4th Large-scale Video Object
Segmentation Challenge--Track 3: Referring Video Object Segmentation [18.630453674396534]
ReferFormer aims to segment object instances in a given video referred by a language expression in all video frames.
This work proposes several tricks to boost further, including cyclical learning rates, semi-supervised approach, and test-time augmentation inference.
The improved ReferFormer ranks 2nd place on CVPR2022 Referring Youtube-VOS Challenge.
arXiv Detail & Related papers (2022-06-24T02:15:06Z) - Occluded Video Instance Segmentation: Dataset and ICCV 2021 Challenge [133.80567761430584]
We collect a large-scale dataset called OVIS for video instance segmentation in the occluded scenario.
OVIS consists of 296k high-quality instance masks and 901 occluded scenes.
All baseline methods encounter a significant performance degradation of about 80% in the heavily occluded object group.
arXiv Detail & Related papers (2021-11-15T17:59:03Z) - A Survey on Deep Learning Technique for Video Segmentation [147.0767454918527]
Video segmentation plays a critical role in a broad range of practical applications.
Deep learning based approaches have been dedicated to video segmentation and delivered compelling performance.
arXiv Detail & Related papers (2021-07-02T15:51:07Z) - A Hierarchical Multi-Modal Encoder for Moment Localization in Video
Corpus [31.387948069111893]
We show how to identify a short segment in a long video that semantically matches a text query.
To tackle this problem, we propose the HierArchical Multi-Modal EncodeR (HAMMER) that encodes a video at both the coarse-grained clip level and the fine-trimmed frame level.
We conduct extensive experiments to evaluate our model on moment localization in video corpus on ActivityNet Captions and TVR datasets.
arXiv Detail & Related papers (2020-11-18T02:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.