One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos
- URL: http://arxiv.org/abs/2409.19603v1
- Date: Sun, 29 Sep 2024 07:47:15 GMT
- Title: One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos
- Authors: Zechen Bai, Tong He, Haiyang Mei, Pichao Wang, Ziteng Gao, Joya Chen, Lei Liu, Zheng Zhang, Mike Zheng Shou,
- Abstract summary: VideoLISA is a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos.
VideoLISA generates temporally consistent segmentation masks in videos based on language instructions.
- Score: 41.34787907803329
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce VideoLISA, a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos. Leveraging the reasoning capabilities and world knowledge of large language models, and augmented by the Segment Anything Model, VideoLISA generates temporally consistent segmentation masks in videos based on language instructions. Existing image-based methods, such as LISA, struggle with video tasks due to the additional temporal dimension, which requires temporal dynamic understanding and consistent segmentation across frames. VideoLISA addresses these challenges by integrating a Sparse Dense Sampling strategy into the video-LLM, which balances temporal context and spatial detail within computational constraints. Additionally, we propose a One-Token-Seg-All approach using a specially designed <TRK> token, enabling the model to segment and track objects across multiple frames. Extensive evaluations on diverse benchmarks, including our newly introduced ReasonVOS benchmark, demonstrate VideoLISA's superior performance in video object segmentation tasks involving complex reasoning, temporal understanding, and object tracking. While optimized for videos, VideoLISA also shows promising generalization to image segmentation, revealing its potential as a unified foundation model for language-instructed object segmentation. Code and model will be available at: https://github.com/showlab/VideoLISA.
Related papers
- ViLLa: Video Reasoning Segmentation with Large Language Model [48.75470418596875]
We propose a new video segmentation task - video reasoning segmentation.
The task is designed to output tracklets of segmentation masks given a complex input text query.
We present ViLLa: Video reasoning segmentation with a Large Language Model.
arXiv Detail & Related papers (2024-07-18T17:59:17Z) - VISA: Reasoning Video Object Segmentation via Large Language Models [64.33167989521357]
We introduce a new task, Reasoning Video Object (ReasonVOS)
This task aims to generate a sequence of segmentation masks in response to implicit text queries that require complex reasoning abilities.
We introduce VISA (Video-based large language Instructed Assistant) to tackle ReasonVOS.
arXiv Detail & Related papers (2024-07-16T02:29:29Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - OmniVid: A Generative Framework for Universal Video Understanding [133.73878582161387]
We seek to unify the output space of video understanding tasks by using languages as labels and additionally introducing time and box tokens.
This enables us to address various types of video tasks, including classification, captioning, and localization.
We demonstrate such a simple and straightforward idea is quite effective and can achieve state-of-the-art or competitive results.
arXiv Detail & Related papers (2024-03-26T17:59:24Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoM is a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools.
An InsOVER algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events.
arXiv Detail & Related papers (2023-10-16T17:05:56Z) - SOC: Semantic-Assisted Object Cluster for Referring Video Object
Segmentation [35.063881868130075]
This paper studies referring video object segmentation (RVOS) by boosting video-level visual-linguistic alignment.
We propose Semantic-assisted Object Cluster (SOC), which aggregates video content and textual guidance for unified temporal modeling and cross-modal alignment.
We conduct extensive experiments on popular RVOS benchmarks, and our method outperforms state-of-the-art competitors on all benchmarks by a remarkable margin.
arXiv Detail & Related papers (2023-05-26T15:13:44Z) - A Hierarchical Multi-Modal Encoder for Moment Localization in Video
Corpus [31.387948069111893]
We show how to identify a short segment in a long video that semantically matches a text query.
To tackle this problem, we propose the HierArchical Multi-Modal EncodeR (HAMMER) that encodes a video at both the coarse-grained clip level and the fine-trimmed frame level.
We conduct extensive experiments to evaluate our model on moment localization in video corpus on ActivityNet Captions and TVR datasets.
arXiv Detail & Related papers (2020-11-18T02:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.