Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities
- URL: http://arxiv.org/abs/2407.11351v1
- Date: Tue, 16 Jul 2024 03:34:38 GMT
- Title: Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities
- Authors: Xu Zheng, Yuanhuiyi Lyu, Lin Wang,
- Abstract summary: Any2Seg is a novel framework that can achieve robust segmentation from any combination of modalities in any visual conditions.
Experiments on two benchmarks with four modalities demonstrate that Any2Seg achieves the state-of-the-art under the multi-modal setting.
- Score: 8.517830626176641
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image modality is not perfect as it often fails in certain conditions, e.g., night and fast motion. This significantly limits the robustness and versatility of existing multi-modal (i.e., Image+X) semantic segmentation methods when confronting modality absence or failure, as often occurred in real-world applications. Inspired by the open-world learning capability of multi-modal vision-language models (MVLMs), we explore a new direction in learning the modality-agnostic representation via knowledge distillation (KD) from MVLMs. Intuitively, we propose Any2Seg, a novel framework that can achieve robust segmentation from any combination of modalities in any visual conditions. Specifically, we first introduce a novel language-guided semantic correlation distillation (LSCD) module to transfer both inter-modal and intra-modal semantic knowledge in the embedding space from MVLMs, e.g., LanguageBind. This enables us to minimize the modality gap and alleviate semantic ambiguity to combine any modalities in any visual conditions. Then, we introduce a modality-agnostic feature fusion (MFF) module that reweights the multi-modal features based on the inter-modal correlation and selects the fine-grained feature. This way, our Any2Seg finally yields an optimal modality-agnostic representation. Extensive experiments on two benchmarks with four modalities demonstrate that Any2Seg achieves the state-of-the-art under the multi-modal setting (+3.54 mIoU) and excels in the challenging modality-incomplete setting(+19.79 mIoU).
Related papers
- Semantic-Guided Multimodal Sentiment Decoding with Adversarial Temporal-Invariant Learning [22.54577327204281]
Multimodal sentiment analysis aims to learn representations from different modalities to identify human emotions.
Existing works often neglect the frame-level redundancy inherent in continuous time series, resulting in incomplete modality representations with noise.
We propose temporal-invariant learning for the first time, which constrains the distributional variations over time steps to effectively capture long-term temporal dynamics.
arXiv Detail & Related papers (2024-08-30T03:28:40Z) - Centering the Value of Every Modality: Towards Efficient and Resilient Modality-agnostic Semantic Segmentation [7.797154022794006]
Recent endeavors regard RGB modality as the center and the others as the auxiliary, yielding an asymmetric architecture with two branches.
We propose a novel method, named MAGIC, that can be flexibly paired with various backbones, ranging from compact to high-performance models.
Our method achieves state-of-the-art performance while reducing the model parameters by 60%.
arXiv Detail & Related papers (2024-07-16T03:19:59Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - FM-ViT: Flexible Modal Vision Transformers for Face Anti-Spoofing [88.6654909354382]
We present a pure transformer-based framework, dubbed the Flexible Modal Vision Transformer (FM-ViT) for face anti-spoofing.
FM-ViT can flexibly target any single-modal (i.e., RGB) attack scenarios with the help of available multi-modal data.
Experiments demonstrate that the single model trained based on FM-ViT can not only flexibly evaluate different modal samples, but also outperforms existing single-modal frameworks by a large margin.
arXiv Detail & Related papers (2023-05-05T04:28:48Z) - MA-ViT: Modality-Agnostic Vision Transformers for Face Anti-Spoofing [3.3031006227198003]
We present Modality-Agnostic Vision Transformer (MA-ViT), which aims to improve the performance of arbitrary modal attacks with the help of multi-modal data.
Specifically, MA-ViT adopts the early fusion to aggregate all the available training modalities data and enables flexible testing of any given modal samples.
Experiments demonstrate that the single model trained on MA-ViT can not only flexibly evaluate different modal samples, but also outperforms existing single-modal frameworks by a large margin.
arXiv Detail & Related papers (2023-04-15T13:03:44Z) - mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image
and Video [89.19867891570945]
mPLUG-2 is a new unified paradigm with modularized design for multi-modal pretraining.
It shares common universal modules for modality collaboration and disentangling different modality modules to deal with modality entanglement.
It is flexible to select different modules for different understanding and generation tasks across all modalities including text, image, and video.
arXiv Detail & Related papers (2023-02-01T12:40:03Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
We propose to use invariant features for a missing modality imagination network (IF-MMIN)
We show that the proposed model outperforms all baselines and invariantly improves the overall emotion recognition performance under uncertain missing-modality conditions.
arXiv Detail & Related papers (2022-10-27T12:16:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.