A Pilot Study of GSLM-based Simulation of Foreign Accentuation Only Using Native Speech Corpora
- URL: http://arxiv.org/abs/2407.11370v1
- Date: Tue, 16 Jul 2024 04:29:00 GMT
- Title: A Pilot Study of GSLM-based Simulation of Foreign Accentuation Only Using Native Speech Corpora
- Authors: Kentaro Onda, Joonyong Park, Nobuaki Minematsu, Daisuke Saito,
- Abstract summary: We propose a method of simulating the human process of foreign accentuation using Generative Spoken Language Model (GSLM)
We simulate this process by inputting speech of language A into GSLM of language B to add B's accent onto the input speech.
The results of our experiments show that the synthesized accent of the output speech is highly natural, compared to real samples of A generated by speakers whose L1 is B.
- Score: 11.258333083479828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method of simulating the human process of foreign accentuation using Generative Spoken Language Model (GSLM) only with native speech corpora. When one listens to spoken words of a foreign language and repeats them, the repeated speech is often with the accent of that listener's L1. This is said to be because the spoken words are mentally represented as a sequence of phonological units of the L1, and those units are used for oral reproduction. We simulate this process by inputting speech of language A into GSLM of language B to add B's accent onto the input speech. The process of running ASR of the L1 for foreign input speech and giving the ASR result to TTS of the L1 can be viewed as a naive implementation of this approach. The results of our experiments show that the synthesized accent of the output speech is highly natural, compared to real samples of A generated by speakers whose L1 is B, and that the degree of accentuation is controllable.
Related papers
- Toward Joint Language Modeling for Speech Units and Text [89.32163954508489]
We explore joint language modeling for speech units and text.
We introduce automatic metrics to evaluate how well the joint LM mixes speech and text.
Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks.
arXiv Detail & Related papers (2023-10-12T20:53:39Z) - How Generative Spoken Language Modeling Encodes Noisy Speech:
Investigation from Phonetics to Syntactics [33.070158866023]
generative spoken language modeling (GSLM) involves using learned symbols derived from data rather than phonemes for speech analysis and synthesis.
This paper presents the findings of GSLM's encoding and decoding effectiveness at the spoken-language and speech levels.
arXiv Detail & Related papers (2023-06-01T14:07:19Z) - Speak Foreign Languages with Your Own Voice: Cross-Lingual Neural Codec
Language Modeling [92.55131711064935]
We propose a cross-lingual neural language model, VALL-E X, for cross-lingual speech synthesis.
VALL-E X inherits strong in-context learning capabilities and can be applied for zero-shot cross-lingual text-to-speech synthesis and zero-shot speech-to-speech translation tasks.
It can generate high-quality speech in the target language via just one speech utterance in the source language as a prompt while preserving the unseen speaker's voice, emotion, and acoustic environment.
arXiv Detail & Related papers (2023-03-07T14:31:55Z) - Cross-lingual Text-To-Speech with Flow-based Voice Conversion for
Improved Pronunciation [11.336431583289382]
This paper presents a method for end-to-end cross-lingual text-to-speech.
It aims to preserve the target language's pronunciation regardless of the original speaker's language.
arXiv Detail & Related papers (2022-10-31T12:44:53Z) - ASR data augmentation in low-resource settings using cross-lingual
multi-speaker TTS and cross-lingual voice conversion [49.617722668505834]
We show that our approach permits the application of speech synthesis and voice conversion to improve ASR systems using only one target-language speaker during model training.
It is possible to obtain promising ASR training results with our data augmentation method using only a single real speaker in a target language.
arXiv Detail & Related papers (2022-03-29T11:55:30Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - On Prosody Modeling for ASR+TTS based Voice Conversion [82.65378387724641]
In voice conversion, an approach showing promising results in the latest voice conversion challenge (VCC) 2020 is to first use an automatic speech recognition (ASR) model to transcribe the source speech into the underlying linguistic contents.
Such a paradigm, referred to as ASR+TTS, overlooks the modeling of prosody, which plays an important role in speech naturalness and conversion similarity.
We propose to directly predict prosody from the linguistic representation in a target-speaker-dependent manner, referred to as target text prediction (TTP)
arXiv Detail & Related papers (2021-07-20T13:30:23Z) - How Phonotactics Affect Multilingual and Zero-shot ASR Performance [74.70048598292583]
A Transformer encoder-decoder model has been shown to leverage multilingual data well in IPA transcriptions of languages presented during training.
We replace the encoder-decoder with a hybrid ASR system consisting of a separate AM and LM.
We show that the gain from modeling crosslingual phonotactics is limited, and imposing a too strong model can hurt the zero-shot transfer.
arXiv Detail & Related papers (2020-10-22T23:07:24Z) - Transfer Learning from Monolingual ASR to Transcription-free
Cross-lingual Voice Conversion [0.0]
Cross-lingual voice conversion is a task that aims to synthesize target voices with the same content while source and target speakers speak in different languages.
In this paper, we focus on knowledge transfer from monolin-gual ASR to cross-lingual VC.
We successfully address cross-lingual VC without any transcription or language-specific knowledge for foreign speech.
arXiv Detail & Related papers (2020-09-30T13:44:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.