SpeechIQ: Speech Intelligence Quotient Across Cognitive Levels in Voice Understanding Large Language Models
- URL: http://arxiv.org/abs/2507.19361v1
- Date: Fri, 25 Jul 2025 15:12:06 GMT
- Title: SpeechIQ: Speech Intelligence Quotient Across Cognitive Levels in Voice Understanding Large Language Models
- Authors: Zhen Wan, Chao-Han Huck Yang, Yahan Yu, Jinchuan Tian, Sheng Li, Ke Hu, Zhehuai Chen, Shinji Watanabe, Fei Cheng, Chenhui Chu, Sadao Kurohashi,
- Abstract summary: Speech-based Intelligence Quotient (SIQ) is a new form of human cognition-inspired evaluation pipeline for voice understanding large language models.<n>Our framework represents a first-of-its-kind intelligence examination that bridges cognitive principles with voice-oriented benchmarks.
- Score: 76.07833875692722
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce Speech-based Intelligence Quotient (SIQ) as a new form of human cognition-inspired evaluation pipeline for voice understanding large language models, LLM Voice, designed to assess their voice understanding ability. Moving beyond popular voice understanding metrics such as word error rate (WER), SIQ examines LLM Voice across three cognitive levels motivated by Bloom's Taxonomy: (1) Remembering (i.e., WER for verbatim accuracy); (2) Understanding (i.e., similarity of LLM's interpretations); and (3) Application (i.e., QA accuracy for simulating downstream tasks). We demonstrate that SIQ not only quantifies voice understanding abilities but also provides unified comparisons between cascaded methods (e.g., ASR LLM) and end-to-end models, identifies annotation errors in existing benchmarks, and detects hallucinations in LLM Voice. Our framework represents a first-of-its-kind intelligence examination that bridges cognitive principles with voice-oriented benchmarks, while exposing overlooked challenges in multi-modal training.
Related papers
- SpeechR: A Benchmark for Speech Reasoning in Large Audio-Language Models [60.72029578488467]
SpeechR is a unified benchmark for evaluating reasoning over speech in large audio-language models.<n>It evaluates models along three key dimensions: factual retrieval, procedural inference, and normative judgment.<n> Evaluations on eleven state-of-the-art LALMs reveal that high transcription accuracy does not translate into strong reasoning capabilities.
arXiv Detail & Related papers (2025-08-04T03:28:04Z) - ProsodyLM: Uncovering the Emerging Prosody Processing Capabilities in Speech Language Models [70.56468982313834]
We propose ProsodyLM, which introduces a simple tokenization scheme amenable to learning prosody.<n>We find that ProsodyLM can learn surprisingly diverse emerging prosody processing capabilities through pre-training alone.
arXiv Detail & Related papers (2025-07-27T00:59:01Z) - Speech-Language Models with Decoupled Tokenizers and Multi-Token Prediction [58.55905182336196]
Speech-language synthesis models (SLMs) offer a promising path toward unifying speech and text understanding and generation.<n>We investigate the impact of key components (i.e., speech tokenizers, speech heads, and speaker modeling) on the performance of SLMs.
arXiv Detail & Related papers (2025-06-14T15:26:31Z) - Speech-IFEval: Evaluating Instruction-Following and Quantifying Catastrophic Forgetting in Speech-Aware Language Models [49.1574468325115]
We introduce Speech-IFeval, an evaluation framework designed to assess instruction-following capabilities.<n>Recent SLMs integrate speech perception with large language models (LLMs), often degrading textual capabilities due to speech-centric training.<n>Our findings show that most SLMs struggle with even basic instructions, performing far worse than text-based LLMs.
arXiv Detail & Related papers (2025-05-25T08:37:55Z) - Audio Large Language Models Can Be Descriptive Speech Quality Evaluators [46.765203628127345]
We introduce the first natural language-based speech evaluation corpus, generated from authentic human ratings.<n>This corpus offers detailed analysis across multiple dimensions and identifies causes of quality degradation.<n>We propose an alignment approach with LLM distillation (ALLD) to guide the audio LLM in extracting relevant information from raw speech.
arXiv Detail & Related papers (2025-01-27T22:47:51Z) - Large Language Models are Strong Audio-Visual Speech Recognition Learners [53.142635674428874]
Multimodal large language models (MLLMs) have recently become a focal point of research due to their formidable multimodal understanding capabilities.<n>We propose Llama-AVSR, a new MLLM with strong audio-visual speech recognition capabilities.<n>We evaluate our proposed approach on LRS3, the largest public AVSR benchmark, and we achieve new state-of-the-art results for the tasks of ASR and AVSR with a WER of 0.79% and 0.77%, respectively.
arXiv Detail & Related papers (2024-09-18T21:17:27Z) - Just ASR + LLM? A Study on Speech Large Language Models' Ability to Identify and Understand Speaker in Spoken Dialogue [41.10328851671422]
SpeechLLMs have demonstrated impressive spoken dialog question-answering (SQA) performance in benchmarks like Gaokao.
We show that SpeechLLMs exhibit limited speaker awareness from the audio and behave similarly to an LLM reasoning from the conversation transcription without sound.
We propose that tasks focused on identity-critical questions could offer a more accurate evaluation framework of SpeechLLMs in SQA.
arXiv Detail & Related papers (2024-09-07T22:54:47Z) - Beyond Silent Letters: Amplifying LLMs in Emotion Recognition with Vocal Nuances [3.396456345114466]
We propose SpeechCueLLM, a method that translates speech characteristics into natural language descriptions.<n>We evaluate SpeechCueLLM on two datasets: IEMOCAP and MELD, showing significant improvements in emotion recognition accuracy.
arXiv Detail & Related papers (2024-07-31T03:53:14Z) - Why does Self-Supervised Learning for Speech Recognition Benefit Speaker
Recognition? [86.53044183309824]
We study which factor leads to the success of self-supervised learning on speaker-related tasks.
Our empirical results on the Voxceleb-1 dataset suggest that the benefit of SSL to SV task is from a combination of mask speech prediction loss, data scale, and model size.
arXiv Detail & Related papers (2022-04-27T08:35:57Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
One-shot voice conversion can be effectively achieved by speech representation disentanglement.
We employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training.
Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations.
arXiv Detail & Related papers (2021-06-18T13:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.