論文の概要: UNIT: Backdoor Mitigation via Automated Neural Distribution Tightening
- arxiv url: http://arxiv.org/abs/2407.11372v1
- Date: Tue, 16 Jul 2024 04:33:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 18:32:32.331084
- Title: UNIT: Backdoor Mitigation via Automated Neural Distribution Tightening
- Title(参考訳): UNIT: 自動ニューラルネットワークによるバックドア緩和
- Authors: Siyuan Cheng, Guangyu Shen, Kaiyuan Zhang, Guanhong Tao, Shengwei An, Hanxi Guo, Shiqing Ma, Xiangyu Zhang,
- Abstract要約: ディープニューラルネットワーク(DNN)は様々な分野で有効性を示している。
DNNはバックドアアタックに対して脆弱で、インプットにトリガーと呼ばれるユニークなパターンを注入することで、アタック・チョーゼンターゲットラベルの誤分類を引き起こす。
本稿では, 各種攻撃に対するバックドア効果を効果的に除去する, ポストトレーニング防衛技術を紹介する。
- 参考スコア(独自算出の注目度): 43.09750187130803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have demonstrated effectiveness in various fields. However, DNNs are vulnerable to backdoor attacks, which inject a unique pattern, called trigger, into the input to cause misclassification to an attack-chosen target label. While existing works have proposed various methods to mitigate backdoor effects in poisoned models, they tend to be less effective against recent advanced attacks. In this paper, we introduce a novel post-training defense technique UNIT that can effectively eliminate backdoor effects for a variety of attacks. In specific, UNIT approximates a unique and tight activation distribution for each neuron in the model. It then proactively dispels substantially large activation values that exceed the approximated boundaries. Our experimental results demonstrate that UNIT outperforms 7 popular defense methods against 14 existing backdoor attacks, including 2 advanced attacks, using only 5\% of clean training data. UNIT is also cost efficient. The code is accessible at https://github.com/Megum1/UNIT.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は様々な分野で有効性を示している。
しかし、DNNはバックドア攻撃に弱いため、インプットにトリガーと呼ばれるユニークなパターンを注入し、アタック・チョーゼンターゲットラベルの誤分類を引き起こす。
既存の研究では、毒性のあるモデルにおけるバックドア効果を緩和する様々な方法が提案されているが、最近の高度な攻撃に対して効果が低い傾向にある。
本稿では,様々な攻撃に対するバックドア効果を効果的に除去できる,訓練後防御技術UNITを提案する。
具体的には、UNITはモデル内の各ニューロンのユニークかつ厳密な活性化分布を近似する。
すると、近似境界を超える実質的な大きな活性化値を積極的に取り除く。
実験の結果,UNITは既存の14件のバックドア攻撃に対して,クリーントレーニングデータの56%しか使用せず,7件の防御方法に優れていた。
UNITも費用対効果が高い。
コードはhttps://github.com/Megum1/UNITでアクセスできる。
関連論文リスト
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Beating Backdoor Attack at Its Own Game [10.131734154410763]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
既存の防御方法は、攻撃の成功率を大幅に低下させた。
有害な試料を標的とした非敵のバックドアを注入する高効率な枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-28T13:07:42Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Invisible Backdoor Attacks Using Data Poisoning in the Frequency Domain [8.64369418938889]
周波数領域に基づく一般化されたバックドア攻撃手法を提案する。
トレーニングプロセスのミスラベルやアクセスをすることなく、バックドアのインプラントを実装できる。
我々は,3つのデータセットに対して,ラベルなし,クリーンラベルのケースにおけるアプローチを評価した。
論文 参考訳(メタデータ) (2022-07-09T07:05:53Z) - Model-Contrastive Learning for Backdoor Defense [13.781375023320981]
モデル・コントラスト学習に基づく新しいバックドア・ディフェンス手法 MCL を提案する。
MCLは、良質なデータの高い精度を維持しながら、バックドアの脅威を減らすのに効果的である。
論文 参考訳(メタデータ) (2022-05-09T16:36:46Z) - Explainability-based Backdoor Attacks Against Graph Neural Networks [9.179577599489559]
ニューラルネットワークにはバックドア攻撃に関する多くの研究があるが、グラフニューラルネットワーク(gnn)を考えるものはごくわずかである。
我々は2つの強力なGNN説明可能性アプローチを適用し、最適なトリガー注入位置を選択し、2つの攻撃目標を達成します。
ベンチマークデータセットと最先端ニューラルネットワークモデルを用いた実験結果から,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2021-04-08T10:43:40Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z) - ONION: A Simple and Effective Defense Against Textual Backdoor Attacks [91.83014758036575]
バックドア攻撃は、ディープニューラルネットワーク(DNN)に対する創発的な訓練時間の脅威である
本論文では,ONION という,シンプルで効果的なテキストバックドア・ディフェンスを提案する。
実験では,5種類のバックドア攻撃に対するBiLSTMとBERTの防御効果を示す。
論文 参考訳(メタデータ) (2020-11-20T12:17:21Z) - Defending against Backdoor Attack on Deep Neural Networks [98.45955746226106]
トレーニングデータの一部にバックドアトリガーを注入する、いわゆるテキストバックドア攻撃について検討する。
実験の結果,本手法は攻撃成功率を効果的に低減し,クリーン画像の分類精度も高いことがわかった。
論文 参考訳(メタデータ) (2020-02-26T02:03:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。