cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process
- URL: http://arxiv.org/abs/2407.11448v2
- Date: Fri, 19 Jul 2024 07:25:29 GMT
- Title: cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process
- Authors: Yihang Chen, Tsai Hor Chan, Guosheng Yin, Yuming Jiang, Lequan Yu,
- Abstract summary: Multiple instance learning (MIL) has been extensively applied to whole slide histoparametric image (WSI) analysis.
The existing aggregation strategy in MIL, which primarily relies on the first-order distance between instances, fails to accurately approximate the true feature distribution of each instance.
We propose a new Bayesian nonparametric framework for multiple instance learning, which adopts a cascade of Dirichlet processes (cDP) to incorporate the instance-to-bag characteristic of the WSIs.
- Score: 23.266122629592807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple instance learning (MIL) has been extensively applied to whole slide histopathology image (WSI) analysis. The existing aggregation strategy in MIL, which primarily relies on the first-order distance (e.g., mean difference) between instances, fails to accurately approximate the true feature distribution of each instance, leading to biased slide-level representations. Moreover, the scarcity of WSI observations easily leads to model overfitting, resulting in unstable testing performance and limited generalizability. To tackle these challenges, we propose a new Bayesian nonparametric framework for multiple instance learning, which adopts a cascade of Dirichlet processes (cDP) to incorporate the instance-to-bag characteristic of the WSIs. We perform feature aggregation based on the latent clusters formed by the Dirichlet process, which incorporates the covariances of the patch features and forms more representative clusters. We then perform bag-level prediction with another Dirichlet process model on the bags, which imposes a natural regularization on learning to prevent overfitting and enhance generalizability. Moreover, as a Bayesian nonparametric method, the cDP model can accurately generate posterior uncertainty, which allows for the detection of outlier samples and tumor localization. Extensive experiments on five WSI benchmarks validate the superior performance of our method, as well as its generalizability and ability to estimate uncertainties. Codes are available at https://github.com/HKU-MedAI/cDPMIL.
Related papers
- Task-oriented Embedding Counts: Heuristic Clustering-driven Feature Fine-tuning for Whole Slide Image Classification [1.292108130501585]
We propose a clustering-driven feature fine-tuning method (HC-FT) to enhance the performance of multiple instance learning.
The proposed method is evaluated on both CAMELYON16 and BRACS datasets, achieving an AUC of 97.13% and 85.85%, respectively.
arXiv Detail & Related papers (2024-06-02T08:53:45Z) - Dynamic Policy-Driven Adaptive Multi-Instance Learning for Whole Slide
Image Classification [26.896926631411652]
Multi-Instance Learning (MIL) has shown impressive performance for histopathology whole slide image (WSI) analysis using bags or pseudo-bags.
Existing MIL-based technologies at least suffer from one or more of the following problems: 1) requiring high storage and intensive pre-processing for numerous instances (sampling); 2) potential over-fitting with limited knowledge to predict bag labels (feature representation); 3) pseudo-bag counts and prior biases affect model robustness and generalizability (decision-making)
arXiv Detail & Related papers (2024-03-09T04:43:24Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Instance-specific and Model-adaptive Supervision for Semi-supervised
Semantic Segmentation [49.82432158155329]
We propose an instance-specific and model-adaptive supervision for semi-supervised semantic segmentation, named iMAS.
iMAS learns from unlabeled instances progressively by weighing their corresponding consistency losses based on the evaluated hardness.
arXiv Detail & Related papers (2022-11-21T10:37:28Z) - Meta-Causal Feature Learning for Out-of-Distribution Generalization [71.38239243414091]
This paper presents a balanced meta-causal learner (BMCL), which includes a balanced task generation module (BTG) and a meta-causal feature learning module (MCFL)
BMCL effectively identifies the class-invariant visual regions for classification and may serve as a general framework to improve the performance of the state-of-the-art methods.
arXiv Detail & Related papers (2022-08-22T09:07:02Z) - Multiplex-detection Based Multiple Instance Learning Network for Whole
Slide Image Classification [2.61155594652503]
Multiple instance learning (MIL) is a powerful approach to classify whole slide images (WSIs) for diagnostic pathology.
We propose a novel multiplex-detection-based multiple instance learning (MDMIL) to tackle the issues above.
Specifically, MDMIL is constructed by the internal query generation module (IQGM) and the multiplex detection module (MDM)
arXiv Detail & Related papers (2022-08-06T14:36:48Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Feature Re-calibration based MIL for Whole Slide Image Classification [7.92885032436243]
Whole slide image (WSI) classification is a fundamental task for the diagnosis and treatment of diseases.
We propose to re-calibrate the distribution of a WSI bag (instances) by using the statistics of the max-instance (critical) feature.
We employ a position encoding module (PEM) to model spatial/morphological information, and perform pooling by multi-head self-attention (PSMA) with a Transformer encoder.
arXiv Detail & Related papers (2022-06-22T07:00:39Z) - PAC Generalization via Invariant Representations [41.02828564338047]
We consider the notion of $epsilon$-approximate invariance in a finite sample setting.
Inspired by PAC learning, we obtain finite-sample out-of-distribution generalization guarantees.
Our results show bounds that do not scale in ambient dimension when intervention sites are restricted to lie in a constant size subset of in-degree bounded nodes.
arXiv Detail & Related papers (2022-05-30T15:50:14Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.