Task-oriented Embedding Counts: Heuristic Clustering-driven Feature Fine-tuning for Whole Slide Image Classification
- URL: http://arxiv.org/abs/2406.00672v1
- Date: Sun, 2 Jun 2024 08:53:45 GMT
- Title: Task-oriented Embedding Counts: Heuristic Clustering-driven Feature Fine-tuning for Whole Slide Image Classification
- Authors: Xuenian Wang, Shanshan Shi, Renao Yan, Qiehe Sun, Lianghui Zhu, Tian Guan, Yonghong He,
- Abstract summary: We propose a clustering-driven feature fine-tuning method (HC-FT) to enhance the performance of multiple instance learning.
The proposed method is evaluated on both CAMELYON16 and BRACS datasets, achieving an AUC of 97.13% and 85.85%, respectively.
- Score: 1.292108130501585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of whole slide image (WSI) classification, multiple instance learning (MIL) serves as a promising approach, commonly decoupled into feature extraction and aggregation. In this paradigm, our observation reveals that discriminative embeddings are crucial for aggregation to the final prediction. Among all feature updating strategies, task-oriented ones can capture characteristics specifically for certain tasks. However, they can be prone to overfitting and contaminated by samples assigned with noisy labels. To address this issue, we propose a heuristic clustering-driven feature fine-tuning method (HC-FT) to enhance the performance of multiple instance learning by providing purified positive and hard negative samples. Our method first employs a well-trained MIL model to evaluate the confidence of patches. Then, patches with high confidence are marked as positive samples, while the remaining patches are used to identify crucial negative samples. After two rounds of heuristic clustering and selection, purified positive and hard negative samples are obtained to facilitate feature fine-tuning. The proposed method is evaluated on both CAMELYON16 and BRACS datasets, achieving an AUC of 97.13% and 85.85%, respectively, consistently outperforming all compared methods.
Related papers
- cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process [23.266122629592807]
Multiple instance learning (MIL) has been extensively applied to whole slide histoparametric image (WSI) analysis.
The existing aggregation strategy in MIL, which primarily relies on the first-order distance between instances, fails to accurately approximate the true feature distribution of each instance.
We propose a new Bayesian nonparametric framework for multiple instance learning, which adopts a cascade of Dirichlet processes (cDP) to incorporate the instance-to-bag characteristic of the WSIs.
arXiv Detail & Related papers (2024-07-16T07:28:39Z) - CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective [48.99488315273868]
We present a contrastive knowledge distillation approach, which can be formulated as a sample-wise alignment problem with intra- and inter-sample constraints.
Our method minimizes logit differences within the same sample by considering their numerical values.
We conduct comprehensive experiments on three datasets including CIFAR-100, ImageNet-1K, and MS COCO.
arXiv Detail & Related papers (2024-04-22T11:52:40Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - NearbyPatchCL: Leveraging Nearby Patches for Self-Supervised Patch-Level
Multi-Class Classification in Whole-Slide Images [10.8479107614771]
Whole-slide image (WSI) analysis plays a crucial role in cancer diagnosis and treatment.
In this paper, we introduce Nearby Patch Contrastive Learning (NearbyPatchCL), a novel self-supervised learning method.
Our method significantly outperforms the supervised baseline and state-of-the-art SSL methods with top-1 classification accuracy of 87.56%.
arXiv Detail & Related papers (2023-12-12T18:24:44Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
We present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views.
Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs.
For the class view, we build the positive and negative pairs from the sample distribution of the class.
In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level.
arXiv Detail & Related papers (2021-03-09T15:15:32Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot object detection (FSOD) helps detectors adapt to unseen classes with few training instances.
We propose a Multi-scale Positive Sample Refinement (MPSR) approach to enrich object scales in FSOD.
MPSR generates multi-scale positive samples as object pyramids and refines the prediction at various scales.
arXiv Detail & Related papers (2020-07-18T09:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.