論文の概要: Graceful task adaptation with a bi-hemispheric RL agent
- arxiv url: http://arxiv.org/abs/2407.11456v1
- Date: Tue, 16 Jul 2024 07:45:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-17 16:12:18.412308
- Title: Graceful task adaptation with a bi-hemispheric RL agent
- Title(参考訳): 両半球RLエージェントによるグレースフルタスク適応
- Authors: Grant Nicholas, Levin Kuhlmann, Gideon Kowadlo,
- Abstract要約: 人間では、タスクを実行する責任は徐々に右半球から左へシフトする。
ノベルティ・ルーティン仮説 (NRH) は、右半球と左半球をそれぞれ新規なタスクとルーチンなタスクに用いていることを述べている。
本研究では,右半球からの一般知識を活用できる強化学習エージェントを開発し,新規タスクにおける初期性能の低下を回避する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In humans, responsibility for performing a task gradually shifts from the right hemisphere to the left. The Novelty-Routine Hypothesis (NRH) states that the right and left hemispheres are used to perform novel and routine tasks respectively, enabling us to learn a diverse range of novel tasks while performing the task capably. Drawing on the NRH, we develop a reinforcement learning agent with specialised hemispheres that can exploit generalist knowledge from the right-hemisphere to avoid poor initial performance on novel tasks. In addition, we find that this design has minimal impact on its ability to learn novel tasks. We conclude by identifying improvements to our agent and exploring potential expansion to the continual learning setting.
- Abstract(参考訳): 人間では、タスクを実行する責任は徐々に右半球から左へシフトする。
NRH(Novety-Routine hypothesis)では,右半球と左半球をそれぞれ新しいタスクと日常的なタスクに用いており,タスクを順応しながら,多様な新しいタスクを学べるようにしている。
NRHをベースとして,右半球からの一般知識を活かし,新規タスクの初期性能の低下を回避するための強化学習エージェントを開発した。
さらに,この設計が新しいタスクを学習する能力に最小限の影響があることが判明した。
我々は、エージェントの改善を特定し、継続的な学習環境の拡張の可能性を探ることで結論付ける。
関連論文リスト
- Efficient Rehearsal Free Zero Forgetting Continual Learning using
Adaptive Weight Modulation [3.6683171094134805]
継続的な学習には、長期にわたって複数のタスクの知識を取得することが含まれる。
この問題に対するほとんどのアプローチは、新しいタスクのパフォーマンスを最大化することと、以前のタスクの忘れを最小化することのバランスを求める。
提案手法は,新しいタスクの性能を最大化しつつ,忘れることのゼロを保証しようとするものである。
論文 参考訳(メタデータ) (2023-11-26T12:36:05Z) - Efficient Open-world Reinforcement Learning via Knowledge Distillation
and Autonomous Rule Discovery [5.680463564655267]
ルール駆動のディープラーニングエージェント(RDQ)がフレームワークの実装の可能な1つだ。
RDQは,世界との対話において,タスク固有のルールを抽出することに成功した。
実験では,RDQエージェントはベースラインエージェントよりも新規性に非常に耐性があることが示されている。
論文 参考訳(メタデータ) (2023-11-24T04:12:50Z) - Robust Knowledge Transfer in Tiered Reinforcement Learning [22.303882476904295]
そこでは,低層(ソース)タスクから高層(ターゲット)タスクに知識を移すことが目的である。
以前の作業とは異なり、低層タスクと高層タスクは同じダイナミクスや報酬関数を共有していないと仮定する。
本稿では,タスクの類似性に応じて部分的状態に一定の後悔が生じるような,新しいオンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-10T22:25:42Z) - ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning [59.08197876733052]
補助タスク学習(ATL)は、関連するタスクから得られる知識を活用することにより、目標タスクの性能を向上させることを目的としている。
複数のタスクを同時に学習すると、ターゲットタスクのみを学習するよりも精度が低下することがある。
ForkMergeは、モデルを定期的に複数のブランチにフォークし、タスクの重みを自動的に検索する新しいアプローチである。
論文 参考訳(メタデータ) (2023-01-30T02:27:02Z) - Human-Timescale Adaptation in an Open-Ended Task Space [56.55530165036327]
大規模にRLエージェントを訓練することで、オープンエンドの新規な3D問題に人間と同じくらい早く適応できる一般的なコンテキスト内学習アルゴリズムが実現可能であることを示す。
我々の研究は、より大規模で適応的なRLエージェントの基礎を築いた。
論文 参考訳(メタデータ) (2023-01-18T15:39:21Z) - Generalizing to New Tasks via One-Shot Compositional Subgoals [23.15624959305799]
以前は見つからなかったタスクをほとんど、あるいはまったく監督せずに一般化する能力は、現代の機械学習研究において重要な課題である。
適応型「近未来」サブゴールを用いて、模倣学習エージェントを訓練することにより、これらの問題に対処しようとするCASEを導入する。
実験の結果,提案手法は従来よりも30%向上していることがわかった。
論文 参考訳(メタデータ) (2022-05-16T14:30:11Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
本稿では,スキル埋め込み空間を通じてパラメータ化された,密接に関連するスキルの強化学習のための学習機構を提案する。
本研究の主な貢献は、エントロピー規則化政策勾配定式化の助けを借りて、強化学習のための敵の訓練体制を定式化することである。
論文 参考訳(メタデータ) (2022-01-27T19:51:09Z) - Latent Skill Planning for Exploration and Transfer [49.25525932162891]
本稿では,この2つの手法を1つの強化学習エージェントに統合する方法について検討する。
テスト時の高速適応に部分的償却の考え方を活用する。
私たちは、困難なロコモーションタスクのスイートでデザイン決定のメリットを実演しています。
論文 参考訳(メタデータ) (2020-11-27T18:40:03Z) - Planning to Explore via Self-Supervised World Models [120.31359262226758]
Plan2Exploreは自己監督型強化学習エージェントである。
我々は、自己監督型探索と、新しいタスクへの迅速な適応に対する新しいアプローチを提案する。
Plan2Exploreは、訓練の監督やタスク固有の相互作用がなければ、自己監督型の探査方法よりも優れている。
論文 参考訳(メタデータ) (2020-05-12T17:59:45Z) - Transforming task representations to perform novel tasks [12.008469282323492]
知性の重要な側面は、直接の経験(ゼロショット)なしで新しいタスクに適応できる能力である。
本稿では,従来のタスクとの関係に基づいて,新しいタスクに適応するための一般的な計算フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-08T23:41:57Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
本稿では,タスクがサブタスクグラフによって特徴づけられるような,新しい数発のRL問題を提案し,対処する。
メタ政治を直接学習する代わりに、Subtask Graph Inferenceを使ったメタラーナーを開発した。
実験の結果,2つのグリッドワールド領域とStarCraft II環境において,提案手法が潜在タスクパラメータを正確に推定できることが確認された。
論文 参考訳(メタデータ) (2020-01-01T17:34:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。