論文の概要: Investigating Imperceptibility of Adversarial Attacks on Tabular Data: An Empirical Analysis
- arxiv url: http://arxiv.org/abs/2407.11463v3
- Date: Fri, 4 Oct 2024 06:35:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 21:10:26.208623
- Title: Investigating Imperceptibility of Adversarial Attacks on Tabular Data: An Empirical Analysis
- Title(参考訳): タブラルデータに対する敵対的攻撃の非受容性の検討--経験的分析
- Authors: Zhipeng He, Chun Ouyang, Laith Alzubaidi, Alistair Barros, Catarina Moreira,
- Abstract要約: 敵対的攻撃は、機械学習モデルに対する潜在的な脅威である。
これらの攻撃は入力データに対する知覚不能な摂動を通じて誤った予測を引き起こす。
本研究は、敵攻撃の非受容性を評価するための重要な特徴とそれに対応する指標のセットを提案する。
- 参考スコア(独自算出の注目度): 1.6693963355435217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks are a potential threat to machine learning models by causing incorrect predictions through imperceptible perturbations to the input data. While these attacks have been extensively studied in unstructured data like images, applying them to tabular data, poses new challenges. These challenges arise from the inherent heterogeneity and complex feature interdependencies in tabular data, which differ from the image data. To account for this distinction, it is necessary to establish tailored imperceptibility criteria specific to tabular data. However, there is currently a lack of standardised metrics for assessing the imperceptibility of adversarial attacks on tabular data. To address this gap, we propose a set of key properties and corresponding metrics designed to comprehensively characterise imperceptible adversarial attacks on tabular data. These are: proximity to the original input, sparsity of altered features, deviation from the original data distribution, sensitivity in perturbing features with narrow distribution, immutability of certain features that should remain unchanged, feasibility of specific feature values that should not go beyond valid practical ranges, and feature interdependencies capturing complex relationships between data attributes. We evaluate the imperceptibility of five adversarial attacks, including both bounded attacks and unbounded attacks, on tabular data using the proposed imperceptibility metrics. The results reveal a trade-off between the imperceptibility and effectiveness of these attacks. The study also identifies limitations in current attack algorithms, offering insights that can guide future research in the area. The findings gained from this empirical analysis provide valuable direction for enhancing the design of adversarial attack algorithms, thereby advancing adversarial machine learning on tabular data.
- Abstract(参考訳): 敵対的攻撃は、入力データに対する知覚不能な摂動を通じて誤った予測を引き起こすことによって、機械学習モデルに対する潜在的な脅威である。
これらの攻撃は、画像のような構造化されていないデータで広く研究されているが、それらを表のデータに適用することは、新しい課題をもたらす。
これらの課題は、画像データとは異なる表データの固有の不均一性と複雑な特徴相互依存性から生じる。
この区別を考慮に入れるには、表型データに特有な適合不能基準を確立する必要がある。
しかし、現在、表データに対する敵攻撃の非受容性を評価するための標準化された指標が欠如している。
このギャップに対処するために、表データに対する知覚不能な敵攻撃を包括的に特徴付けるために、重要な特性とそれに対応するメトリクスのセットを提案する。
それらは、元の入力に近づき、変更された特徴の空間性、元のデータ分布からの逸脱、狭い分散を伴う摂動特性の感度、変更すべき機能の不変性、有効な実用的な範囲を超えてはならない特定の特徴値の実現性、データ属性間の複雑な関係をキャプチャする機能相互依存性である。
提案手法を用いて,有界攻撃と非有界攻撃の両方を含む5つの敵攻撃の非受容性を評価する。
その結果、これらの攻撃の不可避性と有効性の間のトレードオフが明らかとなった。
この研究は、現在の攻撃アルゴリズムの限界を特定し、この分野における将来の研究をガイドする洞察を提供する。
この経験的分析から得られた知見は、敵攻撃アルゴリズムの設計を強化する上で貴重な方向を提供する。
関連論文リスト
- Exploiting the Data Gap: Utilizing Non-ignorable Missingness to Manipulate Model Learning [13.797822374912773]
敵対的ミススティングネス(AM)攻撃は、悪意ある無知の欠陥メカニズムによって動機づけられる。
本研究は,AM攻撃の文脈における連帯学習に焦点を当てる。
両レベルの最適化として,対向的欠落メカニズムの学習を定式化する。
論文 参考訳(メタデータ) (2024-09-06T17:10:28Z) - Footprints of Data in a Classifier Model: The Privacy Issues and Their Mitigation through Data Obfuscation [0.9208007322096533]
トレーニングデータのフットプリントを 予測モデルに埋め込むことは
テストデータとトレーニングデータのパフォーマンス品質の違いは、モデルをトレーニングしたデータの受動的識別を引き起こす。
この研究は、データフットプリントから生じる脆弱性に対処することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-02T13:56:37Z) - Detecting Adversarial Data via Perturbation Forgery [28.637963515748456]
逆検出は、自然データと逆データの間の分布とノイズパターンの相違に基づいて、データフローから逆データを特定し、フィルタリングすることを目的としている。
不均衡および異方性雑音パターンを回避した生成モデルに基づく新しい攻撃
本研究では,ノイズ分布の摂動,スパースマスク生成,擬似対向データ生成を含む摂動フォージェリを提案し,未知の勾配に基づく,生成モデルに基づく,物理的対向攻撃を検出することができる対向検出器を訓練する。
論文 参考訳(メタデータ) (2024-05-25T13:34:16Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
機械学習モデルを確実に使用するためには、デプロイメント時のデータの不整合の特定と適切な処理が不可欠である。
我々は,有向非巡回グラフ(DAG)を用いて,トレーニングセットの特徴分布と非依存性を構造として符号化する。
我々の手法はDAGnosisと呼ばれ、これらの構造的相互作用を利用して、価値があり洞察に富んだデータ中心の結論をもたらす。
論文 参考訳(メタデータ) (2024-02-26T11:29:16Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Autoregressive Perturbations for Data Poisoning [54.205200221427994]
ソーシャルメディアからのデータスクレイピングは、不正なデータの使用に関する懸念が高まっている。
データ中毒攻撃は、スクラップ対策として提案されている。
より広範なデータセットにアクセスせずに有毒なデータを生成できる自動回帰(AR)中毒を導入する。
論文 参考訳(メタデータ) (2022-06-08T06:24:51Z) - AI-based Re-identification of Behavioral Clickstream Data [0.0]
本論文は, 行動パターンに基づいて, 個人を純粋に同定する上で, 同様の手法が適用可能であることを実証する。
レコード間の振舞いパターンの単なる類似性は、識別された個人に振舞いデータを正しく属性付けるのに十分である。
また、私たちが導入したAIベースの再識別攻撃に対して回復力があることが示されています。
論文 参考訳(メタデータ) (2022-01-21T16:49:00Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z) - Not All Datasets Are Born Equal: On Heterogeneous Data and Adversarial
Examples [46.625818815798254]
我々は、異種データで訓練された機械学習モデルは、同種データで訓練された機械学習モデルと同じくらい敵の操作に影響を受けやすいと論じる。
不均一な入力空間における逆摂動を識別する汎用的な最適化フレームワークを提案する。
その結果、異種データセットの入力妥当性に制約が課されているにもかかわらず、そのようなデータを用いて訓練された機械学習モデルは相変わらず敵の例にも適用可能であることが示された。
論文 参考訳(メタデータ) (2020-10-07T05:24:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。