論文の概要: Bridge Past and Future: Overcoming Information Asymmetry in Incremental Object Detection
- arxiv url: http://arxiv.org/abs/2407.11499v1
- Date: Tue, 16 Jul 2024 08:37:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 16:02:34.095686
- Title: Bridge Past and Future: Overcoming Information Asymmetry in Incremental Object Detection
- Title(参考訳): 橋梁過去と未来:インクリメンタル物体検出における情報非対称性の克服
- Authors: Qijie Mo, Yipeng Gao, Shenghao Fu, Junkai Yan, Ancong Wu, Wei-Shi Zheng,
- Abstract要約: 漸進的な物体検出において、知識蒸留は破滅的な忘れを緩和する有効な方法であることが証明されている。
以前の研究は、過去のモデルの知識を保存し、画像が過去、現在、そして将来の段階のカテゴリを同時に含んでいることを無視することに焦点を当てていた。
本稿では,ブリッジ・パス・アンド・フューチャー(BPF)と呼ばれる手法を提案する。
- 参考スコア(独自算出の注目度): 32.17312370744576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In incremental object detection, knowledge distillation has been proven to be an effective way to alleviate catastrophic forgetting. However, previous works focused on preserving the knowledge of old models, ignoring that images could simultaneously contain categories from past, present, and future stages. The co-occurrence of objects makes the optimization objectives inconsistent across different stages since the definition for foreground objects differs across various stages, which limits the model's performance greatly. To overcome this problem, we propose a method called ``Bridge Past and Future'' (BPF), which aligns models across stages, ensuring consistent optimization directions. In addition, we propose a novel Distillation with Future (DwF) loss, fully leveraging the background probability to mitigate the forgetting of old classes while ensuring a high level of adaptability in learning new classes. Extensive experiments are conducted on both Pascal VOC and MS COCO benchmarks. Without memory, BPF outperforms current state-of-the-art methods under various settings. The code is available at https://github.com/iSEE-Laboratory/BPF.
- Abstract(参考訳): 漸進的な物体検出において、知識蒸留は破滅的な忘れを緩和する有効な方法であることが証明されている。
しかし、過去の研究は古いモデルの知識の保存に重点を置いており、画像が過去、現在、将来の段階のカテゴリを同時に含んでいることを無視していた。
オブジェクトの共起により、前景オブジェクトの定義が様々なステージで異なり、モデルの性能が大幅に制限されるため、最適化の目的は異なるステージにわたって矛盾する。
この問題を解決するために, BPF (Bridge Past and Future') と呼ばれる手法を提案する。
さらに,新しいクラスを学習する上で高い適応性を確保しつつ,古いクラスの忘れを緩和するために,背景の確率を十分に活用する新しいDwF(Distillation with Future)の損失を提案する。
パスカルVOCとMS COCOのベンチマークで大規模な実験が行われた。
BPFはメモリなしで、様々な設定で現在の最先端のメソッドより優れている。
コードはhttps://github.com/iSEE-Laboratory/BPF.comで入手できる。
関連論文リスト
- An Effective Dynamic Gradient Calibration Method for Continual Learning [11.555822066922508]
継続的学習(CL)は機械学習の基本的なトピックであり、目標は連続的なデータとタスクでモデルをトレーニングすることだ。
メモリ制限のため、すべての履歴データを保存できないため、破滅的な忘れの問題に直面します。
モデルの各更新ステップの勾配をキャリブレーションする有効なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-07-30T16:30:09Z) - Resurrecting Old Classes with New Data for Exemplar-Free Continual Learning [13.264972882846966]
継続的な学習方法は破滅的な忘れ込みに苦しむことが知られている。
既存のexemplar-freeメソッドは、通常、最初のタスクがその後のタスクよりもかなり大きい設定で評価される。
本稿では, 従来のモデル埋め込み空間において, 組込みが旧型プロトタイプに近いように, 現在のサンプルを逆向きに摂動させることを提案する。
次に,従来のモデルから新しいモデルへの埋め込み空間のドリフトを摂動画像を用いて推定し,それに応じてプロトタイプを補償する。
論文 参考訳(メタデータ) (2024-05-29T13:31:42Z) - Prototype-Sample Relation Distillation: Towards Replay-Free Continual
Learning [14.462797749666992]
本稿では,表現とクラスプロトタイプを共同で学習するための総合的なアプローチを提案する。
本稿では,新しいタスクデータと比較して,クラスプロトタイプの相対的類似性を維持することを制約する新しい蒸留損失を提案する。
この手法はタスクインクリメンタル設定における最先端性能を得る。
論文 参考訳(メタデータ) (2023-03-26T16:35:45Z) - Post-Processing Temporal Action Detection [134.26292288193298]
時間的行動検出(TAD)法は、通常、入力された可変長のビデオを固定長のスニペット表現シーケンスに変換する際に、前処理のステップを踏む。
この前処理ステップは、ビデオを時間的にダウンサンプリングし、推論の解像度を低減し、元の時間分解における検出性能を阻害する。
モデルの再設計や再学習を伴わない新しいモデル非依存のポストプロセッシング手法を提案する。
論文 参考訳(メタデータ) (2022-11-27T19:50:37Z) - Uncertainty-aware Contrastive Distillation for Incremental Semantic
Segmentation [46.14545656625703]
破滅的な忘れ物とは、ニューラルネットワークが、新しいタスクを学ぶときに、古いタスクから得た知識を保存できない傾向があることです。
我々は新しい蒸留フレームワークである不確かさを意識したコントラスト蒸留法(メソッド)を提案する。
本研究は, 従来のIL法と相乗効果を持つ蒸留法の利点を実証するものである。
論文 参考訳(メタデータ) (2022-03-26T15:32:12Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot Object Detection (FSOD) は、未確認のタスクに少ないトレーニングサンプルで適応できるジェネリック検出器を学習することを目的としている。
計算量の増加を伴わない効率的なプレトレイン・トランスファー・フレームワーク(PTF)のベースラインを提案する。
また,予測された新しいウェイトと事前訓練されたベースウェイトとのベクトル長の不整合を軽減するために,適応長再スケーリング(ALR)戦略を提案する。
論文 参考訳(メタデータ) (2022-03-23T06:24:31Z) - LocATe: End-to-end Localization of Actions in 3D with Transformers [91.28982770522329]
LocATeは、3Dシーケンスでアクションを共同でローカライズし認識するエンドツーエンドのアプローチである。
画像やパッチの特徴を入力として考えるトランスフォーマーベースのオブジェクト検出や分類モデルとは異なり、LocATeのトランスフォーマーモデルはシーケンス内のアクション間の長期的な相関をキャプチャすることができる。
BABEL-TAL-20 (BT20) という新しい,挑戦的で,より現実的なベンチマークデータセットを導入する。
論文 参考訳(メタデータ) (2022-03-21T03:35:32Z) - Always Be Dreaming: A New Approach for Data-Free Class-Incremental
Learning [73.24988226158497]
データフリークラスインクリメンタルラーニング(DFCIL)における高インパクト問題について考察する。
そこで本研究では, 改良型クロスエントロピートレーニングと重要重み付き特徴蒸留に寄与するDFCILの新たなインクリメンタル蒸留戦略を提案する。
本手法は,共通クラスインクリメンタルベンチマークにおけるSOTA DFCIL法と比較して,最終タスク精度(絶対差)が25.1%向上する。
論文 参考訳(メタデータ) (2021-06-17T17:56:08Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - Class-incremental Learning with Rectified Feature-Graph Preservation [24.098892115785066]
本論文の中心的なテーマは,逐次的な段階を経る新しいクラスを学習することである。
旧知識保存のための重み付きユークリッド正規化を提案する。
新しいクラスを効果的に学習するために、クラス分離を増やすためにバイナリクロスエントロピーでどのように機能するかを示す。
論文 参考訳(メタデータ) (2020-12-15T07:26:04Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
本稿では,段階的タスク間の情報を最適に共有するように,モデル勾配を再形成するメタラーニング手法を提案する。
既存のメタ学習法と比較して,本手法はタスク非依存であり,オブジェクト検出のための高容量モデルに新たなクラスやスケールを段階的に追加することができる。
論文 参考訳(メタデータ) (2020-03-17T13:40:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。