Neural Compression of Atmospheric States
- URL: http://arxiv.org/abs/2407.11666v2
- Date: Wed, 17 Jul 2024 13:20:51 GMT
- Title: Neural Compression of Atmospheric States
- Authors: Piotr Mirowski, David Warde-Farley, Mihaela Rosca, Matthew Koichi Grimes, Yana Hasson, Hyunjik Kim, Mélanie Rey, Simon Osindero, Suman Ravuri, Shakir Mohamed,
- Abstract summary: We propose a method for compressing atmospheric states using methods from the neural network.
We show that both families of models satisfy the desiderata of small average error.
We demonstrate compression ratios in excess of 1000x, with compression and decompression at a rate of approximately one second per global atmospheric state.
- Score: 19.938380199858454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Atmospheric states derived from reanalysis comprise a substantial portion of weather and climate simulation outputs. Many stakeholders -- such as researchers, policy makers, and insurers -- use this data to better understand the earth system and guide policy decisions. Atmospheric states have also received increased interest as machine learning approaches to weather prediction have shown promising results. A key issue for all audiences is that dense time series of these high-dimensional states comprise an enormous amount of data, precluding all but the most well resourced groups from accessing and using historical data and future projections. To address this problem, we propose a method for compressing atmospheric states using methods from the neural network literature, adapting spherical data to processing by conventional neural architectures through the use of the area-preserving HEALPix projection. We investigate two model classes for building neural compressors: the hyperprior model from the neural image compression literature and recent vector-quantised models. We show that both families of models satisfy the desiderata of small average error, a small number of high-error reconstructed pixels, faithful reproduction of extreme events such as hurricanes and heatwaves, preservation of the spectral power distribution across spatial scales. We demonstrate compression ratios in excess of 1000x, with compression and decompression at a rate of approximately one second per global atmospheric state.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.453657018459705]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.
By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.
It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - Machine Learning Techniques for Data Reduction of Climate Applications [11.55089543867768]
We present a pipelined compression approach that first uses neural-network-based techniques to derive regions where QoI are highly likely to be present.
We employ a Guaranteed Autoencoder (GAE) to compress data with differential error bounds.
Results are presented for climate data generated from the E3SM Simulation model for downstream quantities such as tropical cyclone and atmospheric river detection and tracking.
arXiv Detail & Related papers (2024-05-01T21:44:47Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Long-term hail risk assessment with deep neural networks [0.0]
Hail risk assessment is necessary to estimate and reduce damage to crops, orchards, and infrastructure.
There are no machine learning models for data-driven forecasting of changes in hail frequency for a given area.
This study compares two approaches and introduces a model suitable for the task of forecasting changes in hail frequency for ongoing decades.
arXiv Detail & Related papers (2022-08-31T18:24:39Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - Deep Learning based Extreme Heatwave Forecast [8.975667614727648]
Using 1000 years of state-of-the-art PlaSim Planete Simulator Climate Model data, it is shown that Convolutional Neural Network-based Deep Learning frameworks, with large-class undersampling and transfer learning achieve significant performance in forecasting the occurrence of extreme heatwaves.
arXiv Detail & Related papers (2021-03-17T16:10:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.