Improving Unsupervised Video Object Segmentation via Fake Flow Generation
- URL: http://arxiv.org/abs/2407.11714v1
- Date: Tue, 16 Jul 2024 13:32:50 GMT
- Title: Improving Unsupervised Video Object Segmentation via Fake Flow Generation
- Authors: Suhwan Cho, Minhyeok Lee, Jungho Lee, Donghyeong Kim, Seunghoon Lee, Sungmin Woo, Sangyoun Lee,
- Abstract summary: We propose a novel data generation method that simulates fake optical flows from single images.
Inspired by the observation that optical flow maps are highly dependent on depth maps, we generate fake optical flows by refining and augmenting the estimated depth maps of each image.
- Score: 20.89278343723177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised video object segmentation (VOS), also known as video salient object detection, aims to detect the most prominent object in a video at the pixel level. Recently, two-stream approaches that leverage both RGB images and optical flow maps have gained significant attention. However, the limited amount of training data remains a substantial challenge. In this study, we propose a novel data generation method that simulates fake optical flows from single images, thereby creating large-scale training data for stable network learning. Inspired by the observation that optical flow maps are highly dependent on depth maps, we generate fake optical flows by refining and augmenting the estimated depth maps of each image. By incorporating our simulated image-flow pairs, we achieve new state-of-the-art performance on all public benchmark datasets without relying on complex modules. We believe that our data generation method represents a potential breakthrough for future VOS research.
Related papers
- Skin the sheep not only once: Reusing Various Depth Datasets to Drive
the Learning of Optical Flow [25.23550076996421]
We propose to leverage the geometric connection between optical flow estimation and stereo matching.
We turn the monocular depth datasets into stereo ones via virtual disparity.
We also introduce virtual camera motion into stereo data to produce additional flows along the vertical direction.
arXiv Detail & Related papers (2023-10-03T06:56:07Z) - MPI-Flow: Learning Realistic Optical Flow with Multiplane Images [18.310665144874775]
We investigate generating realistic optical flow datasets from real-world images.
To generate highly realistic new images, we construct a layered depth representation, known as multiplane images (MPI), from single-view images.
To ensure the realism of motion, we present an independent object motion module that can separate the camera and dynamic object motion in MPI.
arXiv Detail & Related papers (2023-09-13T04:31:00Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
We consider the task of low-light image enhancement (LLIE) and introduce a large-scale database consisting of images at 4K and 8K resolution.
We conduct systematic benchmarking studies and provide a comparison of current LLIE algorithms.
As a second contribution, we introduce LLFormer, a transformer-based low-light enhancement method.
arXiv Detail & Related papers (2022-12-22T09:05:07Z) - RealFlow: EM-based Realistic Optical Flow Dataset Generation from Videos [28.995525297929348]
RealFlow is a framework that can create large-scale optical flow datasets directly from unlabeled realistic videos.
We first estimate optical flow between a pair of video frames, and then synthesize a new image from this pair based on the predicted flow.
Our approach achieves state-of-the-art performance on two standard benchmarks compared with both supervised and unsupervised optical flow methods.
arXiv Detail & Related papers (2022-07-22T13:33:03Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Recent Trends in 2D Object Detection and Applications in Video Event
Recognition [0.76146285961466]
We discuss the pioneering works in object detection, followed by the recent breakthroughs that employ deep learning.
We highlight recent datasets for 2D object detection both in images and videos, and present a comparative performance summary of various state-of-the-art object detection techniques.
arXiv Detail & Related papers (2022-02-07T14:15:11Z) - Learning optical flow from still images [53.295332513139925]
We introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture.
We virtually move the camera in the reconstructed environment with known motion vectors and rotation angles.
When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data.
arXiv Detail & Related papers (2021-04-08T17:59:58Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
We focus on learning a model from multiple views of a large collection of object instances.
We propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction.
Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks.
arXiv Detail & Related papers (2021-03-30T17:57:01Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
We present an end-to-end joint training framework that explicitly models 6-DoF motion of multiple dynamic objects, ego-motion and depth in a monocular camera setup without supervision.
Our framework is shown to outperform the state-of-the-art depth and motion estimation methods.
arXiv Detail & Related papers (2021-02-04T14:26:42Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.