Enhancing Split Computing and Early Exit Applications through Predefined Sparsity
- URL: http://arxiv.org/abs/2407.11763v1
- Date: Tue, 16 Jul 2024 14:24:04 GMT
- Title: Enhancing Split Computing and Early Exit Applications through Predefined Sparsity
- Authors: Luigi Capogrosso, Enrico Fraccaroli, Giulio Petrozziello, Francesco Setti, Samarjit Chakraborty, Franco Fummi, Marco Cristani,
- Abstract summary: Deep Neural Networks (DNNs) achieved state-of-the-art performance in a broad range of problems, spanning from object classification and action recognition to smart building and healthcare.
The flexibility that makes DNNs such a pervasive technology comes at a price: the computational requirements preclude their deployment on resource-constrained edge devices.
This paper introduces a novel approach to address this challenge by combining the concept of predefined sparsity with Split Computing (SC) and Early Exit (EE)
Experimental results showcase reductions exceeding 4x in storage and computational complexity without compromising performance.
- Score: 12.293736644405937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the past decade, Deep Neural Networks (DNNs) achieved state-of-the-art performance in a broad range of problems, spanning from object classification and action recognition to smart building and healthcare. The flexibility that makes DNNs such a pervasive technology comes at a price: the computational requirements preclude their deployment on most of the resource-constrained edge devices available today to solve real-time and real-world tasks. This paper introduces a novel approach to address this challenge by combining the concept of predefined sparsity with Split Computing (SC) and Early Exit (EE). In particular, SC aims at splitting a DNN with a part of it deployed on an edge device and the rest on a remote server. Instead, EE allows the system to stop using the remote server and rely solely on the edge device's computation if the answer is already good enough. Specifically, how to apply such a predefined sparsity to a SC and EE paradigm has never been studied. This paper studies this problem and shows how predefined sparsity significantly reduces the computational, storage, and energy burdens during the training and inference phases, regardless of the hardware platform. This makes it a valuable approach for enhancing the performance of SC and EE applications. Experimental results showcase reductions exceeding 4x in storage and computational complexity without compromising performance. The source code is available at https://github.com/intelligolabs/sparsity_sc_ee.
Related papers
- I-SplitEE: Image classification in Split Computing DNNs with Early Exits [5.402030962296633]
Large size of Deep Neural Networks (DNNs) hinders deploying them on resource-constrained devices like edge, mobile, and IoT platforms.
Our work presents an innovative unified approach merging early exits and split computing.
I-SplitEE is an online unsupervised algorithm ideal for scenarios lacking ground truths and with sequential data.
arXiv Detail & Related papers (2024-01-19T07:44:32Z) - Slimmable Encoders for Flexible Split DNNs in Bandwidth and Resource
Constrained IoT Systems [12.427821850039448]
We propose a novel split computing approach based on slimmable ensemble encoders.
The key advantage of our design is the ability to adapt computational load and transmitted data size in real-time with minimal overhead and time.
Our model outperforms existing solutions in terms of compression efficacy and execution time, especially in the context of weak mobile devices.
arXiv Detail & Related papers (2023-06-22T06:33:12Z) - Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs [64.26714148634228]
congestion control (CC) algorithms become extremely difficult to design.
It is currently not possible to deploy AI models on network devices due to their limited computational capabilities.
We build a computationally-light solution based on a recent reinforcement learning CC algorithm.
arXiv Detail & Related papers (2022-07-05T20:42:24Z) - Dynamic Split Computing for Efficient Deep Edge Intelligence [78.4233915447056]
We introduce dynamic split computing, where the optimal split location is dynamically selected based on the state of the communication channel.
We show that dynamic split computing achieves faster inference in edge computing environments where the data rate and server load vary over time.
arXiv Detail & Related papers (2022-05-23T12:35:18Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Split Computing and Early Exiting for Deep Learning Applications: Survey
and Research Challenges [18.103754866476088]
We provide a comprehensive survey of the state of the art in split computing (SC) and early exiting (EE) strategies.
Recent approaches have been proposed, where the deep neural network is split into a head and a tail model, executed respectively on the mobile device and on the edge device.
EE trains models to present multiple "exits" earlier in the architecture, each providing increasingly higher target accuracy.
arXiv Detail & Related papers (2021-03-08T01:47:20Z) - Cost-effective Machine Learning Inference Offload for Edge Computing [0.3149883354098941]
This paper proposes a novel offloading mechanism by leveraging installed-base on-premises (edge) computational resources.
The proposed mechanism allows the edge devices to offload heavy and compute-intensive workloads to edge nodes instead of using remote cloud.
arXiv Detail & Related papers (2020-12-07T21:11:02Z) - Dataflow Aware Mapping of Convolutional Neural Networks Onto Many-Core
Platforms With Network-on-Chip Interconnect [0.0764671395172401]
Machine intelligence, especially using convolutional neural networks (CNNs), has become a large area of research over the past years.
Many-core platforms consisting of several homogeneous cores can alleviate limitations with regard to physical implementation at the expense of an increased dataflow mapping effort.
This work presents an automated mapping strategy starting at the single-core level with different optimization targets for minimal runtime and minimal off-chip memory accesses.
The strategy is then extended towards a suitable many-core mapping scheme and evaluated using a scalable system-level simulation with a network-on-chip interconnect.
arXiv Detail & Related papers (2020-06-18T17:13:18Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.