Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions
- URL: http://arxiv.org/abs/2407.11778v1
- Date: Tue, 16 Jul 2024 14:36:30 GMT
- Title: Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions
- Authors: Harrie Oosterhuis, Lijun Lyu, Avishek Anand,
- Abstract summary: We attribute the problem of misleading selections by formalizing the concepts of label and feature leakage.
We propose the first local feature selection method that is proven to have no leakage called SUWR.
Our experimental results indicate that SUWR is less prone to overfitting and combines state-of-the-art predictive performance with high feature-selection sparsity.
- Score: 15.811319240038603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Local feature selection in machine learning provides instance-specific explanations by focusing on the most relevant features for each prediction, enhancing the interpretability of complex models. However, such methods tend to produce misleading explanations by encoding additional information in their selections. In this work, we attribute the problem of misleading selections by formalizing the concepts of label and feature leakage. We rigorously derive the necessary and sufficient conditions under which we can guarantee no leakage, and show existing methods do not meet these conditions. Furthermore, we propose the first local feature selection method that is proven to have no leakage called SUWR. Our experimental results indicate that SUWR is less prone to overfitting and combines state-of-the-art predictive performance with high feature-selection sparsity. Our generic and easily extendable formal approach provides a strong theoretical basis for future work on interpretability with reliable explanations.
Related papers
- Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data.
However, these models display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of decision shortcuts''
arXiv Detail & Related papers (2024-03-01T09:01:53Z) - Plausible Extractive Rationalization through Semi-Supervised Entailment Signal [29.67884478799914]
We take a semi-supervised approach to optimize for the plausibility of extracted rationales.
We adopt a pre-trained natural language inference (NLI) model and further fine-tune it on a small set of supervised rationales.
We show that, by enforcing the alignment agreement between the explanation and answer in a question-answering task, the performance can be improved without access to ground truth labels.
arXiv Detail & Related papers (2024-02-13T14:12:32Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
We introduce LaPLACE-explainer, designed to provide probabilistic cause-and-effect explanations for machine learning models.
The LaPLACE-Explainer component leverages the concept of a Markov blanket to establish statistical boundaries between relevant and non-relevant features.
Our approach offers causal explanations and outperforms LIME and SHAP in terms of local accuracy and consistency of explained features.
arXiv Detail & Related papers (2023-10-01T04:09:59Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
We study counterfactual synthesis from a new perspective of knowledge extrapolation.
We show that an adversarial game with a closed-form discriminator can be used to address the knowledge extrapolation problem.
Our method enjoys both elegant theoretical guarantees and superior performance in many scenarios.
arXiv Detail & Related papers (2022-05-21T08:39:42Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
We propose D-BAT (Diversity-By-disAgreement Training), which enforces agreement among the models on the training data.
We show how D-BAT naturally emerges from the notion of generalized discrepancy.
arXiv Detail & Related papers (2022-02-09T12:03:02Z) - Interpretable Data-Based Explanations for Fairness Debugging [7.266116143672294]
Gopher is a system that produces compact, interpretable, and causal explanations for bias or unexpected model behavior.
We introduce the concept of causal responsibility that quantifies the extent to which intervening on training data by removing or updating subsets of it can resolve the bias.
Building on this concept, we develop an efficient approach for generating the top-k patterns that explain model bias.
arXiv Detail & Related papers (2021-12-17T20:10:00Z) - Probabilistic Sufficient Explanations [31.08715352013011]
We introduce probabilistic sufficient explanations, which formulate explaining an instance of classification as choosing the "simplest" subset of features.
We design a scalable algorithm for finding the desired explanations while keeping the guarantees intact.
Our experiments demonstrate the effectiveness of our algorithm in finding sufficient explanations, and showcase its advantages compared to Anchors and logical explanations.
arXiv Detail & Related papers (2021-05-21T04:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.