Click-Gaussian: Interactive Segmentation to Any 3D Gaussians
- URL: http://arxiv.org/abs/2407.11793v1
- Date: Tue, 16 Jul 2024 14:49:27 GMT
- Title: Click-Gaussian: Interactive Segmentation to Any 3D Gaussians
- Authors: Seokhun Choi, Hyeonseop Song, Jaechul Kim, Taehyeong Kim, Hoseok Do,
- Abstract summary: We propose Click-Gaussian, which learns distinguishable feature fields of two-level granularity.
Our method runs in 10 ms per click, 15 to 130 times as fast as the previous methods.
- Score: 2.8461293457421957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactive segmentation of 3D Gaussians opens a great opportunity for real-time manipulation of 3D scenes thanks to the real-time rendering capability of 3D Gaussian Splatting. However, the current methods suffer from time-consuming post-processing to deal with noisy segmentation output. Also, they struggle to provide detailed segmentation, which is important for fine-grained manipulation of 3D scenes. In this study, we propose Click-Gaussian, which learns distinguishable feature fields of two-level granularity, facilitating segmentation without time-consuming post-processing. We delve into challenges stemming from inconsistently learned feature fields resulting from 2D segmentation obtained independently from a 3D scene. 3D segmentation accuracy deteriorates when 2D segmentation results across the views, primary cues for 3D segmentation, are in conflict. To overcome these issues, we propose Global Feature-guided Learning (GFL). GFL constructs the clusters of global feature candidates from noisy 2D segments across the views, which smooths out noises when training the features of 3D Gaussians. Our method runs in 10 ms per click, 15 to 130 times as fast as the previous methods, while also significantly improving segmentation accuracy. Our project page is available at https://seokhunchoi.github.io/Click-Gaussian
Related papers
- Gradient-Driven 3D Segmentation and Affordance Transfer in Gaussian Splatting Using 2D Masks [6.647959476396794]
3D Gaussian Splatting has emerged as a powerful 3D scene representation technique, capturing fine details with high efficiency.
In this paper, we introduce a novel voting-based method that extends 2D segmentation models to 3D Gaussian splats.
The robust yet straightforward mathematical formulation underlying this approach makes it a highly effective tool for numerous downstream applications.
arXiv Detail & Related papers (2024-09-18T03:45:44Z) - FlashSplat: 2D to 3D Gaussian Splatting Segmentation Solved Optimally [66.28517576128381]
This study addresses the challenge of accurately segmenting 3D Gaussian Splatting from 2D masks.
We propose a straightforward yet globally optimal solver for 3D-GS segmentation.
Our method completes within 30 seconds, about 50$times$ faster than the best existing methods.
arXiv Detail & Related papers (2024-09-12T17:58:13Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.80822249039235]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.
We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.
Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z) - Segment3D: Learning Fine-Grained Class-Agnostic 3D Segmentation without
Manual Labels [141.23836433191624]
Current 3D scene segmentation methods are heavily dependent on manually annotated 3D training datasets.
We propose Segment3D, a method for class-agnostic 3D scene segmentation that produces high-quality 3D segmentation masks.
arXiv Detail & Related papers (2023-12-28T18:57:11Z) - 2D-Guided 3D Gaussian Segmentation [15.139488857163064]
This paper introduces a 3D Gaussian segmentation method implemented with 2D segmentation as supervision.
This approach uses input 2D segmentation maps to guide the learning of the added 3D Gaussian semantic information.
Experiments show that our method can achieve comparable performances on mIOU and mAcc for multi-object segmentation.
arXiv Detail & Related papers (2023-12-26T13:28:21Z) - SAM-guided Graph Cut for 3D Instance Segmentation [60.75119991853605]
This paper addresses the challenge of 3D instance segmentation by simultaneously leveraging 3D geometric and multi-view image information.
We introduce a novel 3D-to-2D query framework to effectively exploit 2D segmentation models for 3D instance segmentation.
Our method achieves robust segmentation performance and can generalize across different types of scenes.
arXiv Detail & Related papers (2023-12-13T18:59:58Z) - Segment Any 3D Gaussians [85.93694310363325]
This paper presents SAGA, a highly efficient 3D promptable segmentation method based on 3D Gaussian Splatting (3D-GS)
Given 2D visual prompts as input, SAGA can segment the corresponding 3D target represented by 3D Gaussians within 4 ms.
We show that SAGA achieves real-time multi-granularity segmentation with quality comparable to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-01T17:15:24Z) - Gaussian Grouping: Segment and Edit Anything in 3D Scenes [65.49196142146292]
We propose Gaussian Grouping, which extends Gaussian Splatting to jointly reconstruct and segment anything in open-world 3D scenes.
Compared to the implicit NeRF representation, we show that the grouped 3D Gaussians can reconstruct, segment and edit anything in 3D with high visual quality, fine granularity and efficiency.
arXiv Detail & Related papers (2023-12-01T17:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.