Boosting drug-disease association prediction for drug repositioning via dual-feature extraction and cross-dual-domain decoding
- URL: http://arxiv.org/abs/2407.11812v2
- Date: Fri, 11 Oct 2024 13:49:03 GMT
- Title: Boosting drug-disease association prediction for drug repositioning via dual-feature extraction and cross-dual-domain decoding
- Authors: Enqiang Zhu, Xiang Li, Chanjuan Liu, Nikhil R. Pal,
- Abstract summary: We propose a Dual-Feature Drug Repositioning Neural Network (DFDRNN) model to represent drugs and diseases.
Our proposed DFDRNN model outperforms six state-of-the-art methods on four benchmark datasets.
Case studies on two diseases show that the proposed DFDRNN model can be applied in real-world scenarios.
- Score: 9.721502993958193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncovering new therapeutic uses of existing drugs, drug repositioning offers a fast and cost-effective strategy and holds considerable significance in the realm of drug discovery and development. In recent years, deep learning techniques have emerged as powerful tools in drug repositioning due to their ability to analyze large and complex datasets. However, many existing methods focus on extracting feature information from nearby nodes in the network to represent drugs and diseases, without considering the potential inter-relationships between the features of drugs and diseases, which may lead to inaccurate representations. To address this limitation, we use two features (similarity and association) to capture the potential relationships between the features of drugs and diseases, proposing a Dual-Feature Drug Repositioning Neural Network (DFDRNN) model. DFDRNN uses a self-attention mechanism to extract neighbor features and incorporates two dual-feature extraction modules: the intra-domain dual-feature extraction (IntraDDFE) module for extracting features within a single domain (drugs or diseases) and the inter-domain dual-feature extraction (InterDDFE) module for extracting features across domains. By utilizing these modules, we ensure more appropriate encoding of drugs and diseases. Additionally, a cross-dual-domain decoder is designed to predict drug-disease associations in both domains. Our proposed DFDRNN model outperforms six state-of-the-art methods on four benchmark datasets, achieving an average AUROC of 0.946 and an average AUPR of 0.597. Case studies on two diseases show that the proposed DFDRNN model can be applied in real-world scenarios, demonstrating its significant potential in drug repositioning.
Related papers
- RGDA-DDI: Residual graph attention network and dual-attention based framework for drug-drug interaction prediction [4.044376666671973]
We propose RGDA-DDI, a residual graph attention network (residual-GAT) and dual-attention based framework for drug-drug interaction prediction.
A series of evaluation metrics demonstrate that the RGDA-DDI significantly improved DDI prediction performance on two public benchmark datasets.
arXiv Detail & Related papers (2024-08-27T17:13:56Z) - Multiscale Topology in Interactomic Network: From Transcriptome to
Antiaddiction Drug Repurposing [0.3683202928838613]
The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies.
This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment.
arXiv Detail & Related papers (2023-12-03T04:01:38Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization [16.41618129467975]
We take a multi-layered network perspective, where different layers correspond to different similarity metrics between drugs and targets.
To fully take advantage of topology information captured in multiple views, we develop an optimization framework, called MDMF, for DTI prediction.
The framework learns vector representations of drugs and targets that not only retain higher-order proximity across all hyper-layers, but also approximates the interactions with their inner product.
arXiv Detail & Related papers (2022-01-24T08:02:05Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
We propose a DDI-controllable drug recommendation model named SafeDrug to leverage drugs' molecule structures and model DDIs explicitly.
On a benchmark dataset, our SafeDrug is relatively shown to reduce DDI by 19.43% and improves 2.88% on Jaccard similarity between recommended and actually prescribed drug combinations over previous approaches.
arXiv Detail & Related papers (2021-05-05T00:20:48Z) - AttentionDDI: Siamese Attention-based Deep Learning method for drug-drug
interaction predictions [0.9176056742068811]
Drug-drug interactions (DDIs) refer to processes triggered by the administration of two or more drugs leading to side effects beyond those observed when drugs are administered by themselves.
Due to the massive number of possible drug pairs, it is nearly impossible to experimentally test all combinations and discover previously unobserved side effects.
We propose a Siamese self-attention multi-modal neural network for DDI prediction that integrates multiple drug similarity measures.
arXiv Detail & Related papers (2020-12-24T13:33:07Z) - Hybrid Attentional Memory Network for Computational drug repositioning [0.0]
The cold start problem has always been a major challenge in the field of computational drug repositioning.
We propose the Hybrid Attentional Memory Network (HAMN) model, a deep architecture combines two classes of CF model in a nonlinear manner.
Our proposed HAMN model is superior to other comparison models according to the AUC, AUPR and HR indicators.
arXiv Detail & Related papers (2020-06-12T02:12:32Z) - Attention-based Neural Bag-of-Features Learning for Sequence Data [143.62294358378128]
2D-Attention (2DA) is a generic attention formulation for sequence data.
The proposed attention module is incorporated into the recently proposed Neural Bag of Feature (NBoF) model to enhance its learning capacity.
Our empirical analysis shows that the proposed attention formulations can not only improve performances of NBoF models but also make them resilient to noisy data.
arXiv Detail & Related papers (2020-05-25T17:51:54Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.