Schema Matching with Large Language Models: an Experimental Study
- URL: http://arxiv.org/abs/2407.11852v1
- Date: Tue, 16 Jul 2024 15:33:00 GMT
- Title: Schema Matching with Large Language Models: an Experimental Study
- Authors: Marcel Parciak, Brecht Vandevoort, Frank Neven, Liesbet M. Peeters, Stijn Vansummeren,
- Abstract summary: We investigate the use of an off-the-shelf Large Language Models (LLMs) for schema matching.
Our objective is to identify semantic correspondences between elements of two relational schemas using only names and descriptions.
- Score: 0.580553237364985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown useful applications in a variety of tasks, including data wrangling. In this paper, we investigate the use of an off-the-shelf LLM for schema matching. Our objective is to identify semantic correspondences between elements of two relational schemas using only names and descriptions. Using a newly created benchmark from the health domain, we propose different so-called task scopes. These are methods for prompting the LLM to do schema matching, which vary in the amount of context information contained in the prompt. Using these task scopes we compare LLM-based schema matching against a string similarity baseline, investigating matching quality, verification effort, decisiveness, and complementarity of the approaches. We find that matching quality suffers from a lack of context information, but also from providing too much context information. In general, using newer LLM versions increases decisiveness. We identify task scopes that have acceptable verification effort and succeed in identifying a significant number of true semantic matches. Our study shows that LLMs have potential in bootstrapping the schema matching process and are able to assist data engineers in speeding up this task solely based on schema element names and descriptions without the need for data instances.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - Assessing SPARQL capabilities of Large Language Models [0.0]
We focus on measuring out-of-the box capabilities of Large Language Models to work with SPARQL.
We implement benchmarking tasks in the LLM-KG-Bench framework for automated execution and evaluation.
Our findings indicate that working with SPARQL SELECT queries is still challenging for LLMs.
arXiv Detail & Related papers (2024-09-09T08:29:39Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - ReMatch: Retrieval Enhanced Schema Matching with LLMs [0.874967598360817]
We present a novel method, named ReMatch, for matching schemas using retrieval-enhanced Large Language Models (LLMs)
Our experimental results on large real-world schemas demonstrate that ReMatch is an effective matcher.
arXiv Detail & Related papers (2024-03-03T17:14:40Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
Large Language Models (LLMs) have shown strong capabilities in language understanding and can be used to solve this task.
Existing methods bypass this challenge by initially employing LLMs to generate drafts of logic forms without schema-specific details.
We propose a simple In-Context Understanding (ICSU) method that enables LLMs to directly understand schemas by leveraging in-context learning.
arXiv Detail & Related papers (2023-10-22T04:19:17Z) - Entity Matching using Large Language Models [3.7277730514654555]
This paper investigates using generative large language models (LLMs) as a less task-specific training data-dependent alternative to PLM-based matchers.
We show that GPT4 can generate structured explanations for matching decisions and can automatically identify potential causes of matching errors.
arXiv Detail & Related papers (2023-10-17T13:12:32Z) - Enhancing In-Context Learning with Answer Feedback for Multi-Span
Question Answering [9.158919909909146]
In this paper, we propose a novel way of employing labeled data such as it informs LLM of some undesired output.
Experiments on three multi-span question answering datasets and a keyphrase extraction dataset show that our new prompting strategy consistently improves LLM's in-context learning performance.
arXiv Detail & Related papers (2023-06-07T15:20:24Z) - Disambiguation of Company names via Deep Recurrent Networks [101.90357454833845]
We propose a Siamese LSTM Network approach to extract -- via supervised learning -- an embedding of company name strings.
We analyse how an Active Learning approach to prioritise the samples to be labelled leads to a more efficient overall learning pipeline.
arXiv Detail & Related papers (2023-03-07T15:07:57Z) - Improving Multi-task Generalization Ability for Neural Text Matching via
Prompt Learning [54.66399120084227]
Recent state-of-the-art neural text matching models (PLMs) are hard to generalize to different tasks.
We adopt a specialization-generalization training strategy and refer to it as Match-Prompt.
In specialization stage, descriptions of different matching tasks are mapped to only a few prompt tokens.
In generalization stage, text matching model explores the essential matching signals by being trained on diverse multiple matching tasks.
arXiv Detail & Related papers (2022-04-06T11:01:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.