An In-Context Schema Understanding Method for Knowledge Base Question
Answering
- URL: http://arxiv.org/abs/2310.14174v2
- Date: Sat, 10 Feb 2024 06:18:59 GMT
- Title: An In-Context Schema Understanding Method for Knowledge Base Question
Answering
- Authors: Yantao Liu, Zixuan Li, Xiaolong Jin, Yucan Guo, Long Bai, Saiping
Guan, Jiafeng Guo and Xueqi Cheng
- Abstract summary: Large Language Models (LLMs) have shown strong capabilities in language understanding and can be used to solve this task.
Existing methods bypass this challenge by initially employing LLMs to generate drafts of logic forms without schema-specific details.
We propose a simple In-Context Understanding (ICSU) method that enables LLMs to directly understand schemas by leveraging in-context learning.
- Score: 70.87993081445127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Knowledge Base Question Answering (KBQA) task aims to answer natural
language questions based on a given knowledge base. Recently, Large Language
Models (LLMs) have shown strong capabilities in language understanding and can
be used to solve this task. In doing so, a major challenge for LLMs is to
overcome the immensity and heterogeneity of knowledge base schemas.Existing
methods bypass this challenge by initially employing LLMs to generate drafts of
logic forms without schema-specific details.Then, an extra module is used to
inject schema information to these drafts.In contrast, in this paper, we
propose a simple In-Context Schema Understanding (ICSU) method that enables
LLMs to directly understand schemas by leveraging in-context learning.
Specifically, ICSU provides schema information to LLMs using schema-related
annotated examples. We investigate three example retrieval strategies based on
raw questions, anonymized questions, and generated SPARQL queries. Experimental
results show that ICSU demonstrates competitive performance compared to
baseline methods on both the KQA Pro and WebQSP datasets.
Related papers
- RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
We propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules.
We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks.
arXiv Detail & Related papers (2024-11-04T00:01:34Z) - SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - Assessing SPARQL capabilities of Large Language Models [0.0]
We focus on measuring out-of-the box capabilities of Large Language Models to work with SPARQL.
We implement benchmarking tasks in the LLM-KG-Bench framework for automated execution and evaluation.
Our findings indicate that working with SPARQL SELECT queries is still challenging for LLMs.
arXiv Detail & Related papers (2024-09-09T08:29:39Z) - HOLMES: Hyper-Relational Knowledge Graphs for Multi-hop Question Answering using LLMs [9.559336828884808]
Large Language Models (LLMs) are adept at answering simple (single-hop) questions.
As the complexity of the questions increase, the performance of LLMs degrades.
Recent methods try to reduce this burden by integrating structured knowledge triples into the raw text.
We propose to use a knowledge graph (KG) that is context-aware and is distilled to contain query-relevant information.
arXiv Detail & Related papers (2024-06-10T05:22:49Z) - Interactive-KBQA: Multi-Turn Interactions for Knowledge Base Question Answering with Large Language Models [7.399563588835834]
Interactive-KBQA is a framework designed to generate logical forms through direct interaction with knowledge bases (KBs)
Our method achieves competitive results on the WebQuestionsSP, ComplexWebQuestions, KQA Pro, and MetaQA datasets.
arXiv Detail & Related papers (2024-02-23T06:32:18Z) - keqing: knowledge-based question answering is a nature chain-of-thought
mentor of LLM [27.76205400533089]
Large language models (LLMs) have exhibited remarkable performance on various natural language processing (NLP) tasks, especially for question answering.
We present a novel framework to assist LLMs, such as ChatGPT, to retrieve question-related structured information on the knowledge graph.
The experimental results on KBQA datasets show that Keqing can achieve competitive performance and illustrate the logic of answering each question.
arXiv Detail & Related papers (2023-12-31T08:39:04Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - A Simple Baseline for Knowledge-Based Visual Question Answering [78.00758742784532]
This paper is on the problem of Knowledge-Based Visual Question Answering (KB-VQA)
Our main contribution in this paper is to propose a much simpler and readily reproducible pipeline.
Contrary to recent approaches, our method is training-free, does not require access to external databases or APIs, and achieves state-of-the-art accuracy on the OK-VQA and A-OK-VQA datasets.
arXiv Detail & Related papers (2023-10-20T15:08:17Z) - Code-Style In-Context Learning for Knowledge-Based Question Answering [34.821095476923745]
We propose a code-style in-context learning method for Knowledge-Based Question Answering (KBQA)
Experimental results on three mainstream datasets show that our method dramatically mitigated the formatting error problem in generating logic forms.
arXiv Detail & Related papers (2023-09-09T06:27:00Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
In this work, we propose a novel method called ALLIES.
Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query.
By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly through retrieval.
arXiv Detail & Related papers (2023-05-24T06:16:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.