DepGAN: Leveraging Depth Maps for Handling Occlusions and Transparency in Image Composition
- URL: http://arxiv.org/abs/2407.11890v1
- Date: Tue, 16 Jul 2024 16:18:40 GMT
- Title: DepGAN: Leveraging Depth Maps for Handling Occlusions and Transparency in Image Composition
- Authors: Amr Ghoneim, Jiju Poovvancheri, Yasushi Akiyama, Dong Chen,
- Abstract summary: DepGAN is a Generative Adversarial Network that utilizes depth maps and alpha channels to rectify inaccurate occlusions.
Central to our network is a novel loss function called Depth Aware Loss which quantifies the pixel wise depth difference.
We enhance our network's learning process by utilizing opacity data, enabling it to effectively manage compositions involving transparent and semi-transparent objects.
- Score: 7.693732944239458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image composition is a complex task which requires a lot of information about the scene for an accurate and realistic composition, such as perspective, lighting, shadows, occlusions, and object interactions. Previous methods have predominantly used 2D information for image composition, neglecting the potentials of 3D spatial information. In this work, we propose DepGAN, a Generative Adversarial Network that utilizes depth maps and alpha channels to rectify inaccurate occlusions and enhance transparency effects in image composition. Central to our network is a novel loss function called Depth Aware Loss which quantifies the pixel wise depth difference to accurately delineate occlusion boundaries while compositing objects at different depth levels. Furthermore, we enhance our network's learning process by utilizing opacity data, enabling it to effectively manage compositions involving transparent and semi-transparent objects. We tested our model against state-of-the-art image composition GANs on benchmark (both real and synthetic) datasets. The results reveal that DepGAN significantly outperforms existing methods in terms of accuracy of object placement semantics, transparency and occlusion handling, both visually and quantitatively. Our code is available at https://amrtsg.github.io/DepGAN/.
Related papers
- BIFRÖST: 3D-Aware Image compositing with Language Instructions [27.484947109237964]
Bifr"ost is a novel 3D-aware framework that is built upon diffusion models to perform instruction-based image composition.
Bifr"ost addresses issues by training MLLM as a 2.5D location predictor and integrating depth maps as an extra condition during the generation process.
arXiv Detail & Related papers (2024-10-24T18:35:12Z) - SurANet: Surrounding-Aware Network for Concealed Object Detection via Highly-Efficient Interactive Contrastive Learning Strategy [55.570183323356964]
We propose a novel Surrounding-Aware Network, namely SurANet, for concealed object detection.
We enhance the semantics of feature maps using differential fusion of surrounding features to highlight concealed objects.
Next, a Surrounding-Aware Contrastive Loss is applied to identify the concealed object via learning surrounding feature maps contrastively.
arXiv Detail & Related papers (2024-10-09T13:02:50Z) - Depth-guided Texture Diffusion for Image Semantic Segmentation [47.46257473475867]
We introduce a Depth-guided Texture Diffusion approach that effectively tackles the outlined challenge.
Our method extracts low-level features from edges and textures to create a texture image.
By integrating this enriched depth map with the original RGB image into a joint feature embedding, our method effectively bridges the disparity between the depth map and the image.
arXiv Detail & Related papers (2024-08-17T04:55:03Z) - Intrinsic Image Decomposition Using Point Cloud Representation [13.771632868567277]
We introduce Point Intrinsic Net (PoInt-Net), which leverages 3D point cloud data to concurrently estimate albedo and shading maps.
PoInt-Net is efficient, achieving consistent performance across point clouds of any size with training only required on small-scale point clouds.
arXiv Detail & Related papers (2023-07-20T14:51:28Z) - Pyramid Deep Fusion Network for Two-Hand Reconstruction from RGB-D Images [11.100398985633754]
We propose an end-to-end framework for recovering dense meshes for both hands.
Our framework employs ResNet50 and PointNet++ to derive features from RGB and point cloud.
We also introduce a novel pyramid deep fusion network (PDFNet) to aggregate features at different scales.
arXiv Detail & Related papers (2023-07-12T09:33:21Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL) methods address the limitations of using image-level feature representations when handling images with multiple objects.
We show that they suffer from coupling and positional bias, which arise from the receptive field increasing with layer depth and zero-padding.
We demonstrate the benefits of our method on COCO and on a new challenging benchmark, OpenImage-MINI, for object classification, semantic segmentation, and object detection.
arXiv Detail & Related papers (2023-03-29T18:07:25Z) - Source-free Depth for Object Pop-out [113.24407776545652]
Modern learning-based methods offer promising depth maps by inference in the wild.
We adapt such depth inference models for object segmentation using the objects' "pop-out" prior in 3D.
Our experiments on eight datasets consistently demonstrate the benefit of our method in terms of both performance and generalizability.
arXiv Detail & Related papers (2022-12-10T21:57:11Z) - S2R-DepthNet: Learning a Generalizable Depth-specific Structural
Representation [63.58891781246175]
Human can infer the 3D geometry of a scene from a sketch instead of a realistic image, which indicates that the spatial structure plays a fundamental role in understanding the depth of scenes.
We are the first to explore the learning of a depth-specific structural representation, which captures the essential feature for depth estimation and ignores irrelevant style information.
Our S2R-DepthNet can be well generalized to unseen real-world data directly even though it is only trained on synthetic data.
arXiv Detail & Related papers (2021-04-02T03:55:41Z) - Learning Joint 2D-3D Representations for Depth Completion [90.62843376586216]
We design a simple yet effective neural network block that learns to extract joint 2D and 3D features.
Specifically, the block consists of two domain-specific sub-networks that apply 2D convolution on image pixels and continuous convolution on 3D points.
arXiv Detail & Related papers (2020-12-22T22:58:29Z) - Depth Edge Guided CNNs for Sparse Depth Upsampling [18.659087667114274]
Guided sparse depth upsampling aims to upsample an irregularly sampled sparse depth map when an aligned high-resolution color image is given as guidance.
We propose a guided convolutional layer to recover dense depth from sparse and irregular depth image with an depth edge image as guidance.
We conduct comprehensive experiments to verify our method on real-world indoor and synthetic outdoor datasets.
arXiv Detail & Related papers (2020-03-23T08:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.