SurANet: Surrounding-Aware Network for Concealed Object Detection via Highly-Efficient Interactive Contrastive Learning Strategy
- URL: http://arxiv.org/abs/2410.06842v1
- Date: Wed, 9 Oct 2024 13:02:50 GMT
- Title: SurANet: Surrounding-Aware Network for Concealed Object Detection via Highly-Efficient Interactive Contrastive Learning Strategy
- Authors: Yuhan Kang, Qingpeng Li, Leyuan Fang, Jian Zhao, Xuelong Li,
- Abstract summary: We propose a novel Surrounding-Aware Network, namely SurANet, for concealed object detection.
We enhance the semantics of feature maps using differential fusion of surrounding features to highlight concealed objects.
Next, a Surrounding-Aware Contrastive Loss is applied to identify the concealed object via learning surrounding feature maps contrastively.
- Score: 55.570183323356964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concealed object detection (COD) in cluttered scenes is significant for various image processing applications. However, due to that concealed objects are always similar to their background, it is extremely hard to distinguish them. Here, the major obstacle is the tiny feature differences between the inside and outside object boundary region, which makes it trouble for existing COD methods to achieve accurate results. In this paper, considering that the surrounding environment information can be well utilized to identify the concealed objects, and thus, we propose a novel deep Surrounding-Aware Network, namely SurANet, for COD tasks, which introduces surrounding information into feature extraction and loss function to improve the discrimination. First, we enhance the semantics of feature maps using differential fusion of surrounding features to highlight concealed objects. Next, a Surrounding-Aware Contrastive Loss is applied to identify the concealed object via learning surrounding feature maps contrastively. Then, SurANet can be trained end-to-end with high efficiency via our proposed Spatial-Compressed Correlation Transmission strategy after our investigation of feature dynamics, and extensive experiments improve that such features can be well reserved respectively. Finally, experimental results demonstrate that the proposed SurANet outperforms state-of-the-art COD methods on multiple real datasets. Our source code will be available at https://github.com/kyh433/SurANet.
Related papers
- Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
We propose a hierarchical graph interaction network termed HGINet for camouflaged object detection.
The network is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features.
Our experiments demonstrate the superior performance of HGINet compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2024-08-27T12:53:25Z) - Adaptive Guidance Learning for Camouflaged Object Detection [23.777432551429396]
This paper proposes an adaptive guidance learning network, dubbed textitAGLNet, to guide accurate camouflaged feature learning.
Experiments on three widely used COD benchmark datasets demonstrate that the proposed method achieves significant performance improvements.
arXiv Detail & Related papers (2024-05-05T06:21:58Z) - Spatial Coherence Loss: All Objects Matter in Salient and Camouflaged Object Detection [3.03995893427722]
We show that for accurate semantic analysis, the network needs to learn all object-level predictions that appear at any stage of learning.
We propose a novel loss function, Spatial Coherence Loss (SCLoss), that incorporates the mutual response between adjacent pixels into the widely-used single-response loss functions.
arXiv Detail & Related papers (2024-02-28T20:27:49Z) - ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
Recent object (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios.
We propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and camouflaged zooming in and out.
Our framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks.
arXiv Detail & Related papers (2023-10-31T06:11:23Z) - You Do Not Need Additional Priors in Camouflage Object Detection [9.494171532426853]
Camouflage object detection (COD) poses a significant challenge due to the high resemblance between camouflaged objects and their surroundings.
We propose a novel adaptive feature aggregation method that effectively combines multi-layer feature information to generate guidance information.
Our proposed method achieves comparable or superior performance when compared to state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-01T15:44:07Z) - Feature Aggregation and Propagation Network for Camouflaged Object
Detection [42.33180748293329]
Camouflaged object detection (COD) aims to detect/segment camouflaged objects embedded in the environment.
Several COD methods have been developed, but they still suffer from unsatisfactory performance due to intrinsic similarities between foreground objects and background surroundings.
We propose a novel Feature Aggregation and propagation Network (FAP-Net) for camouflaged object detection.
arXiv Detail & Related papers (2022-12-02T05:54:28Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
Spotting camouflaged objects that are visually assimilated into the background is tricky for object detection algorithms.
We aim to extract the high-resolution texture details to avoid the detail degradation that causes blurred vision in edges and boundaries.
We introduce a novel HitNet to refine the low-resolution representations by high-resolution features in an iterative feedback manner.
arXiv Detail & Related papers (2022-03-22T11:20:21Z) - Concealed Object Detection [140.98738087261887]
We present the first systematic study on concealed object detection (COD)
COD aims to identify objects that are "perfectly" embedded in their background.
To better understand this task, we collect a large-scale dataset called COD10K.
arXiv Detail & Related papers (2021-02-20T06:49:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.