Imitation of human motion achieves natural head movements for humanoid robots in an active-speaker detection task
- URL: http://arxiv.org/abs/2407.11915v1
- Date: Tue, 16 Jul 2024 17:08:40 GMT
- Title: Imitation of human motion achieves natural head movements for humanoid robots in an active-speaker detection task
- Authors: Bosong Ding, Murat Kirtay, Giacomo Spigler,
- Abstract summary: Head movements are crucial for social human-human interaction.
In this work, we employed a generative AI pipeline to produce human-like head movements for a Nao humanoid robot.
The results show that the Nao robot successfully imitates human head movements in a natural manner while actively tracking the speakers during the conversation.
- Score: 2.8220015774219567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Head movements are crucial for social human-human interaction. They can transmit important cues (e.g., joint attention, speaker detection) that cannot be achieved with verbal interaction alone. This advantage also holds for human-robot interaction. Even though modeling human motions through generative AI models has become an active research area within robotics in recent years, the use of these methods for producing head movements in human-robot interaction remains underexplored. In this work, we employed a generative AI pipeline to produce human-like head movements for a Nao humanoid robot. In addition, we tested the system on a real-time active-speaker tracking task in a group conversation setting. Overall, the results show that the Nao robot successfully imitates human head movements in a natural manner while actively tracking the speakers during the conversation. Code and data from this study are available at https://github.com/dingdingding60/Humanoids2024HRI
Related papers
- Real-Time Dynamic Robot-Assisted Hand-Object Interaction via Motion Primitives [45.256762954338704]
We propose an approach to enhancing physical HRI with a focus on dynamic robot-assisted hand-object interaction.
We employ a transformer-based algorithm to perform real-time 3D modeling of human hands from single RGB images.
The robot's action implementation is dynamically fine-tuned using the continuously updated 3D hand models.
arXiv Detail & Related papers (2024-05-29T21:20:16Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
We propose to model social motion forecasting in a shared human-robot representation space.
ECHO operates in the aforementioned shared space to predict the future motions of the agents encountered in social scenarios.
We evaluate our model in multi-person and human-robot motion forecasting tasks and obtain state-of-the-art performance by a large margin.
arXiv Detail & Related papers (2024-02-07T11:37:14Z) - Learning Multimodal Latent Dynamics for Human-Robot Interaction [19.803547418450236]
This article presents a method for learning well-coordinated Human-Robot Interaction (HRI) from Human-Human Interactions (HHI)
We devise a hybrid approach using Hidden Markov Models (HMMs) as the latent space priors for a Variational Autoencoder to model a joint distribution over the interacting agents.
We find that Users perceive our method as more human-like, timely, and accurate and rank our method with a higher degree of preference over other baselines.
arXiv Detail & Related papers (2023-11-27T23:56:59Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0 is a simulation platform for studying collaborative human-robot tasks in home environments.
It addresses challenges in modeling complex deformable bodies and diversity in appearance and motion.
Human-in-the-loop infrastructure enables real human interaction with simulated robots via mouse/keyboard or a VR interface.
arXiv Detail & Related papers (2023-10-19T17:29:17Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
This work investigates the perception of object manipulations performed with a communicative intent by two robots.
We designed the robots' movements to communicate carefulness or not during the transportation of objects.
arXiv Detail & Related papers (2022-08-03T13:26:52Z) - Body Gesture Recognition to Control a Social Robot [5.557794184787908]
We propose a gesture based language to allow humans to interact with robots using their body in a natural way.
We have created a new gesture detection model using neural networks and a custom dataset of humans performing a set of body gestures to train our network.
arXiv Detail & Related papers (2022-06-15T13:49:22Z) - Let's be friends! A rapport-building 3D embodied conversational agent
for the Human Support Robot [0.0]
Partial subtle mirroring of nonverbal behaviors during conversations (also known as mimicking or parallel empathy) is essential for rapport building.
Our research question is whether integrating an ECA able to mirror its interlocutor's facial expressions and head movements with a human-service robot will improve the user's experience.
Our contribution is the complex integration of an expressive ECA, able to track its interlocutor's face, and to mirror his/her facial expressions and head movements in real time, integrated with a human support robot.
arXiv Detail & Related papers (2021-03-08T01:02:41Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Self-supervised reinforcement learning for speaker localisation with the
iCub humanoid robot [58.2026611111328]
Looking at a person's face is one of the mechanisms that humans rely on when it comes to filtering speech in noisy environments.
Having a robot that can look toward a speaker could benefit ASR performance in challenging environments.
We propose a self-supervised reinforcement learning-based framework inspired by the early development of humans.
arXiv Detail & Related papers (2020-11-12T18:02:15Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.