Body Gesture Recognition to Control a Social Robot
- URL: http://arxiv.org/abs/2206.07538v1
- Date: Wed, 15 Jun 2022 13:49:22 GMT
- Title: Body Gesture Recognition to Control a Social Robot
- Authors: Javier Laplaza, Joan Jaume Oliver, Ram\'on Romero, Alberto Sanfeliu
and Ana\'is Garrell
- Abstract summary: We propose a gesture based language to allow humans to interact with robots using their body in a natural way.
We have created a new gesture detection model using neural networks and a custom dataset of humans performing a set of body gestures to train our network.
- Score: 5.557794184787908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a gesture based language to allow humans to interact
with robots using their body in a natural way. We have created a new gesture
detection model using neural networks and a custom dataset of humans performing
a set of body gestures to train our network. Furthermore, we compare body
gesture communication with other communication channels to acknowledge the
importance of adding this knowledge to robots. The presented approach is
extensively validated in diverse simulations and real-life experiments with
non-trained volunteers. This attains remarkable results and shows that it is a
valuable framework for social robotics applications, such as human robot
collaboration or human-robot interaction.
Related papers
- Built Different: Tactile Perception to Overcome Cross-Embodiment Capability Differences in Collaborative Manipulation [1.9048510647598207]
Tactile sensing is a powerful means of implicit communication between a human and a robot assistant.
In this paper, we investigate how tactile sensing can transcend cross-embodiment differences across robotic systems.
We show how our method can enable a cooperative task where a robot and human must work together to maneuver objects through space.
arXiv Detail & Related papers (2024-09-23T10:45:41Z) - Imitation of human motion achieves natural head movements for humanoid robots in an active-speaker detection task [2.8220015774219567]
Head movements are crucial for social human-human interaction.
In this work, we employed a generative AI pipeline to produce human-like head movements for a Nao humanoid robot.
The results show that the Nao robot successfully imitates human head movements in a natural manner while actively tracking the speakers during the conversation.
arXiv Detail & Related papers (2024-07-16T17:08:40Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
This paper introduces a novel deep-learning approach for human-to-robot motion.
Our method does not require paired human-to-robot data, which facilitates its translation to new robots.
Our model outperforms existing works regarding human-to-robot similarity in terms of efficiency and precision.
arXiv Detail & Related papers (2023-09-11T08:55:04Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
We propose a novel, deep neural network-based method called CoGrasp that generates human-aware robot grasps.
In real robot experiments, our method achieves about 88% success rate in producing stable grasps.
Our approach enables a safe, natural, and socially-aware human-robot objects' co-grasping experience.
arXiv Detail & Related papers (2022-10-06T19:23:25Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
This work investigates the perception of object manipulations performed with a communicative intent by two robots.
We designed the robots' movements to communicate carefulness or not during the transportation of objects.
arXiv Detail & Related papers (2022-08-03T13:26:52Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
We focus on how to transfer on two different robotic platforms the same kinematics modulation that humans adopt when manipulating delicate objects.
We choose to modulate the velocity profile adopted by the robots' end-effector, inspired by what humans do when transporting objects with different characteristics.
We exploit a novel Generative Adversarial Network architecture, trained with human kinematics examples, to generalize over them and generate new and meaningful velocity profiles.
arXiv Detail & Related papers (2022-03-29T15:03:05Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
This paper presents several human-robot systems that utilize spatial computing to enable novel robot use cases.
The combination of spatial computing and egocentric sensing on mixed reality devices enables them to capture and understand human actions and translate these to actions with spatial meaning.
arXiv Detail & Related papers (2022-02-03T10:04:26Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.