論文の概要: Interpret3C: Interpretable Student Clustering Through Individualized Feature Selection
- arxiv url: http://arxiv.org/abs/2407.11979v1
- Date: Tue, 28 May 2024 15:32:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 11:50:18.587198
- Title: Interpret3C: Interpretable Student Clustering Through Individualized Feature Selection
- Title(参考訳): Interpret3C: 個別の特徴選択による解釈可能な学生クラスタリング
- Authors: Isadora Salles, Paola Mejia-Domenzain, Vinitra Swamy, Julian Blackwell, Tanja Käser,
- Abstract要約: 教育におけるクラスタリング、特にMOOCのような大規模オンライン環境でのクラスタリングは、多様な学生のニーズを理解し、適応するために不可欠である。
既存のクラスタリングアプローチは、機能の重要性における個々の違いを無視し、均質化された機能セットに依存していることが多い。
本稿では,解釈可能なニューラルネットワーク(NN)を教師なし学習コンテキストに組み込んだ,新たなクラスタリングパイプラインであるInterpret3Cを紹介する。
- 参考スコア(独自算出の注目度): 2.428031280449541
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering in education, particularly in large-scale online environments like MOOCs, is essential for understanding and adapting to diverse student needs. However, the effectiveness of clustering depends on its interpretability, which becomes challenging with high-dimensional data. Existing clustering approaches often neglect individual differences in feature importance and rely on a homogenized feature set. Addressing this gap, we introduce Interpret3C (Interpretable Conditional Computation Clustering), a novel clustering pipeline that incorporates interpretable neural networks (NNs) in an unsupervised learning context. This method leverages adaptive gating in NNs to select features for each student. Then, clustering is performed using the most relevant features per student, enhancing clusters' relevance and interpretability. We use Interpret3C to analyze the behavioral clusters considering individual feature importances in a MOOC with over 5,000 students. This research contributes to the field by offering a scalable, robust clustering methodology and an educational case study that respects individual student differences and improves interpretability for high-dimensional data.
- Abstract(参考訳): 教育におけるクラスタリング、特にMOOCのような大規模オンライン環境でのクラスタリングは、多様な学生のニーズを理解し、適応するために不可欠である。
しかし、クラスタリングの有効性は、その解釈可能性に依存するため、高次元データでは困難になる。
既存のクラスタリングアプローチは、機能の重要性における個々の違いを無視し、均質化された機能セットに依存していることが多い。
このギャップに対処するために,解釈可能なニューラルネットワーク(NN)を教師なし学習コンテキストに組み込んだ,新たなクラスタリングパイプラインであるInterpret3C(Interpretable Conditional Computation Clustering)を導入する。
本手法は, NNにおける適応ゲーティングを利用して, 生徒ごとの特徴を抽出する。
次に、生徒毎の最も関連性の高い機能を使用してクラスタリングを行い、クラスタの関連性と解釈可能性を高める。
我々はInterpret3Cを用いて,5,000人以上の学生を抱えるMOOCにおいて,個々の特徴の重要性を考慮した行動クラスタの分析を行った。
この研究は、スケーラブルでロバストなクラスタリング手法と、個々の学生の違いを尊重し、高次元データの解釈可能性を改善する教育ケーススタディを提供することによって、この分野に貢献する。
関連論文リスト
- Explaining Clustering of Ecological Momentary Assessment Data Through Temporal and Feature Attention [4.951599300340955]
エコロジー・モメンタリー・アセスメント (Ecological Momentary Assessment, EMA) 研究は、心理病理関連変数の個人データをリアルタイムに提供する。
本稿では,クラスタの識別において主要な役割を担う重要な時間点と変数を識別する,注目に基づく解釈可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-08T07:09:43Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - XAI for Self-supervised Clustering of Wireless Spectrum Activity [0.5809784853115825]
本稿では,深層クラスタリング,自己教師型学習アーキテクチャの方法論を提案する。
表現学習部では,入力データの関心領域の解釈にガイドバックプロパゲーションを用いる。
クラスタリングの部分は、クラスタリングの結果を説明するために、Shallow Treesに依存しています。
最後に、データ固有の視覚化部は、各クラスタと入力データとの接続を関連機能をトラフすることを可能にする。
論文 参考訳(メタデータ) (2023-05-17T08:56:43Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
本稿では,学習可能性を評価するためにCluster Learnability (CL)を導入する。
CLは、K-meansで表現をクラスタリングすることによって得られたラベルを予測するために訓練されたKNNのパフォーマンスで測定される。
CLは、他の競合する評価手法よりも分布内モデルの性能と相関することがわかった。
論文 参考訳(メタデータ) (2022-06-02T19:05:13Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Fast and Interpretable Consensus Clustering via Minipatch Learning [0.0]
IMPACC: Interpretable MiniPatch Adaptive Consensus Clustering を開発した。
我々は、信頼性と計算コストの両面で改善された観測のための適応型サンプリング手法を開発した。
その結果,より正確で解釈可能なクラスタソリューションが得られた。
論文 参考訳(メタデータ) (2021-10-05T22:39:28Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Clustering-friendly Representation Learning via Instance Discrimination
and Feature Decorrelation [0.0]
本稿では,インスタンス識別と特徴デコレーションを用いたクラスタリングに親しみやすい表現学習手法を提案する。
CIFAR-10とImageNet-10を用いた画像クラスタリングの評価では,それぞれ81.5%,95.4%の精度が得られた。
論文 参考訳(メタデータ) (2021-05-31T22:59:31Z) - Unsupervised Visual Representation Learning by Online Constrained
K-Means [44.38989920488318]
クラスタ識別は、教師なし表現学習の効果的な前提課題である。
オンラインtextbfConstrained textbfK-mtextbfeans (textbfCoKe) を用いたクラスタリングに基づく新しいプリテキストタスクを提案する。
当社のオンライン割当て方式は,グローバルな最適化に近づくための理論的保証を持っている。
論文 参考訳(メタデータ) (2021-05-24T20:38:32Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。