DIM: Dynamic Integration of Multimodal Entity Linking with Large Language Model
- URL: http://arxiv.org/abs/2407.12019v1
- Date: Thu, 27 Jun 2024 15:18:23 GMT
- Title: DIM: Dynamic Integration of Multimodal Entity Linking with Large Language Model
- Authors: Shezheng Song, Shasha Li, Jie Yu, Shan Zhao, Xiaopeng Li, Jun Ma, Xiaodong Liu, Zhuo Li, Xiaoguang Mao,
- Abstract summary: We propose dynamic entity extraction using ChatGPT, which dynamically extracts entities and enhances datasets.
We also propose a method: Dynamically Integrate Multimodal information with knowledge base (DIM), employing the capability of the Large Language Model (LLM) for visual understanding.
- Score: 16.20833396645551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our study delves into Multimodal Entity Linking, aligning the mention in multimodal information with entities in knowledge base. Existing methods are still facing challenges like ambiguous entity representations and limited image information utilization. Thus, we propose dynamic entity extraction using ChatGPT, which dynamically extracts entities and enhances datasets. We also propose a method: Dynamically Integrate Multimodal information with knowledge base (DIM), employing the capability of the Large Language Model (LLM) for visual understanding. The LLM, such as BLIP-2, extracts information relevant to entities in the image, which can facilitate improved extraction of entity features and linking them with the dynamic entity representations provided by ChatGPT. The experiments demonstrate that our proposed DIM method outperforms the majority of existing methods on the three original datasets, and achieves state-of-the-art (SOTA) on the dynamically enhanced datasets (Wiki+, Rich+, Diverse+). For reproducibility, our code and collected datasets are released on \url{https://github.com/season1blue/DIM}.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - ARMADA: Attribute-Based Multimodal Data Augmentation [93.05614922383822]
Attribute-based Multimodal Data Augmentation (ARMADA) is a novel multimodal data augmentation method via knowledge-guided manipulation of visual attributes.
ARMADA is a novel multimodal data generation framework that: (i) extracts knowledge-grounded attributes from symbolic KBs for semantically consistent yet distinctive image-text pair generation.
This also highlights the need to leverage external knowledge proxies for enhanced interpretability and real-world grounding.
arXiv Detail & Related papers (2024-08-19T15:27:25Z) - Leveraging Entity Information for Cross-Modality Correlation Learning: The Entity-Guided Multimodal Summarization [49.08348604716746]
Multimodal Summarization with Multimodal Output (MSMO) aims to produce a multimodal summary that integrates both text and relevant images.
In this paper, we propose an Entity-Guided Multimodal Summarization model (EGMS)
Our model, building on BART, utilizes dual multimodal encoders with shared weights to process text-image and entity-image information concurrently.
arXiv Detail & Related papers (2024-08-06T12:45:56Z) - UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models [0.42832989850721054]
Multimodal Entities Linking (MEL) is a crucial task that aims at linking ambiguous mentions within multimodal contexts to referent entities in a multimodal knowledge base, such as Wikipedia.
Existing methods overcomplicate the MEL task and overlook the visual semantic information, which makes them costly and hard to scale.
We propose UniMEL, a unified framework which establishes a new paradigm to process multimodal entity linking tasks using Large Language Models.
arXiv Detail & Related papers (2024-07-23T03:58:08Z) - DWE+: Dual-Way Matching Enhanced Framework for Multimodal Entity Linking [16.728006492769666]
We propose DWE+ for multimodal entity linking.
DWE+ could capture finer semantics and dynamically maintain semantic consistency with entities.
Experiments on Wikimel, Richpedia, and Wikidiverse datasets demonstrate the effectiveness of DWE+ in improving MEL performance.
arXiv Detail & Related papers (2024-04-07T05:56:42Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - DRIN: Dynamic Relation Interactive Network for Multimodal Entity Linking [31.15972952813689]
We propose a novel framework called Dynamic Relation Interactive Network (DRIN) for MEL tasks.
DRIN explicitly models four different types of alignment between a mention and entity and builds a dynamic Graph Convolutional Network (GCN) to dynamically select the corresponding alignment relations for different input samples.
Experiments on two datasets show that DRIN outperforms state-of-the-art methods by a large margin, demonstrating the effectiveness of our approach.
arXiv Detail & Related papers (2023-10-09T10:21:42Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - MESED: A Multi-modal Entity Set Expansion Dataset with Fine-grained
Semantic Classes and Hard Negative Entities [25.059177235004952]
We propose Multi-modal Entity Set Expansion (MESE), where models integrate information from multiple modalities to represent entities.
A powerful multi-modal model MultiExpan is proposed which is pre-trained on four multimodal pre-training tasks.
The MESED dataset is the first multi-modal dataset for ESE with large-scale and elaborate manual calibration.
arXiv Detail & Related papers (2023-07-27T14:09:59Z) - Named Entity and Relation Extraction with Multi-Modal Retrieval [51.660650522630526]
Multi-modal named entity recognition (NER) and relation extraction (RE) aim to leverage relevant image information to improve the performance of NER and RE.
We propose a novel Multi-modal Retrieval based framework (MoRe)
MoRe contains a text retrieval module and an image-based retrieval module, which retrieve related knowledge of the input text and image in the knowledge corpus respectively.
arXiv Detail & Related papers (2022-12-03T13:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.